Clinical Decision Making During the Perimenopause

Case Study and Commentary, Judith A. Monroe, MD, and Robin H. Ledyard, MD

INSTRUCTIONS

The following article, “Clinical Decision Making During the Perimenopause,” is a continuing medical education (CME) article. To earn credit, read the article and complete the CME evaluation form on page 62.

OBJECTIVES

After participating in the CME activity, primary care physicians should be able to:
1. Recognize the clinical presentation of the perimenopause
2. Understand the multiple stressors facing women at this stage of life
3. Be familiar with the indications, risks, and benefits of hormone replacement therapy
4. Understand the strategies for coronary risk factor modification
5. Recognize women at high risk for osteoporosis and suggest preventive and therapeutic strategies

INTRODUCTION

Women in the perimenopausal years experience not only physiologic changes but also major transitions in social roles and life circumstances. An estimated 41 million women in the United States are now in or past menopause, and another 10 million or more will reach this stage of life in the next decade [1]. Knowledge and research on the physiologic, psychological, and sociologic changes that come with menopause are steadily expanding.

The perimenopause is an important time for establishing preventive health goals. Coronary heart disease (CHD) is the leading cause of death in women in the United States [2]; therefore, primary prevention of CHD is paramount. Research supports preventive strategies for other leading causes of morbidity and mortality, including cancer, alcohol abuse, depression, osteoporosis, and stroke. In addition, much of the functional loss considered as “normal aging” can be modified with lifestyle and pharmacologic intervention. A thorough understanding of the risks and benefits of hormone replacement therapy (HRT) is central to managing the menopause.

CASE STUDY

Initial Presentation

A 48-year-old woman presents to her primary care physician with a chief complaint of menstrual irregularity.

History

The patient’s cycles had been regular until 8 months ago, when she noted the interval between menses was lengthening. Her normal menstrual cycle had been a 29-day interval and 5-day duration. Twice, her cycles changed to 45-day intervals, and now she reports amenorrhea for the past 5 months. She has experienced mild hot flushes, disturbed sleep, decreased libido, and emotional lability.

For the past 4 years, the patient has been the principal of a local elementary school, and for 20 years prior to becoming an administrator she was a schoolteacher. She becomes tearful when describing her job stress and difficulties managing her 3 adolescent children. Additionally, her 80-year-old mother with mild dementia recently moved in with the family. The patient states that her husband is supportive but has just become principal of the local junior high, which has significantly increased his job stress. The patient sporadically takes calcium supplementation and drinks wine to help her relax. She asks if this is what menopause is all about and if hormones will help.

Physical Examination

Physical examination reveals a blood pressure of 146/90 mm Hg, pulse of 88 bpm, respiratory rate of 18 breaths/minute, and temperature of 98.2°F. The patient is 5’ 5” tall and weighs 175 lb. Head, neck, lung, heart, and abdominal examinations reveal no abnormalities. Breast
examination reveals a mobile smooth nodule in the right breast located in the upper outer quadrant. The nodule measures 1.5 × 1.5 cm and is nontender. There are no other abnormalities. Pelvic examination reveals normal external genitalia and dry vaginal mucosa. The cervix is parous and nontender, and the uterus is mobile and of normal size. Ovaries are nonpalpable.

• Is the patient menopausal?

By definition, menopause is diagnosed 12 months after the last menses. The final menses is determined retrospectively. Therefore, this patient is considered not menopausal but perimenopausal. Preceding the final menses by 2 to 8 years, the perimenopause is a period of changing ovarian function, characterized by a variety of symptoms including irregular menses, hot flushes, night sweats, urogenital atrophy, and psychological changes. Hot flushes define the onset of the perimenopause in many women [3].

• Are any diagnostic tests needed to confirm the diagnosis?

Laboratory Workup

During the perimenopausal transition period, the serum levels of follicle-stimulating hormone (FSH) increase at a variable rate. FSH levels may be in the postmenopause range during some cycles and then return to premenopausal concentrations during subsequent cycles. Therefore, a high concentration of FSH does not diagnose menopause in menstruating women. Gonadotropins and estrogen may be high during this transition as well [4]. Luteinizing hormone (LH) increases later, when women are postmenopausal. Eventually, a 10- to 20-fold increase in FSH, accompanied by a threefold increase in LH, occurs and a peak level is reached 1 to 3 years after cessation of the last period [5]. An FSH level greater than 40 IU/L confirms cessation of ovarian function in an amenorrheic woman.

A serum β-human chorionic gonadotropin (β-HCG) is the best diagnostic test to rule out pregnancy in sexually active women who are amenorrheic. The FSH level is suppressed during pregnancy. In women who experience hot flushes and a few months of amenorrhea, a FSH greater than 40 IU/L confirms menopause [6].

This patient is sexually active and has only been amenorrheic for 5 months; therefore, a β-HCG should be done to rule out pregnancy. FSH and LH levels could be measured if the exact status of ovarian function is desired. A serum FSH should be performed prior to starting HRT in any asymptomatic woman who has had a hysterectomy. Clinicians should confirm ovarian failure in any woman who experiences early menopause (before age 40 years) by obtaining 2 elevated levels of FSH and by performing an appropriate workup for secondary amenorrhea [7].

Further History

The patient is emotional and admits to several life stressors. She has gained 20 lb in the past year and finds herself eating when she feels overwhelmed. She has been awakening at 3:00 AM and has trouble going back to sleep. Her 17-year-old daughter’s grades have dropped significantly; her 15-year-old son was discovered to have marijuana at a party; but her 11-year-old daughter is doing well. The patient feels derelict as a mother and does not enjoy time with her family anymore. She reports being too tired to exercise and has difficulty with concentration, symptoms she attributes to the multiple demands in her life. She denies suicidal ideations.

• Is depression a symptom of menopause?

Women attending menopause clinics have an up to 45% incidence of clinical depression [8]. Cohort studies have identified an increased rate of perimenopausal depression primarily in women with a history of depression [9,10]. In contrast, several longitudinal population-based studies report no association between depression and menopause [11]. It is extremely important to recognize that this patient is clinically depressed and will need management. The DSM-IV criteria for major depression are shown in Table 1. This patient has 7 of the 9 symptoms listed, meeting the criteria for an episode of major depression.

• What is the best approach to treating depression in this patient?

This patient should be medically treated for depression. Selection of an antidepressant should be based on safety, tolerability, cost, and dosing convenience. In addition, potential drug interactions and medical conditions should guide the selection of an appropriate antidepressant. The selective serotonin reuptake inhibitors (SSRIs), tricyclic antidepressants (TCAs), and bupropion are equivalent in efficacy for the treatment of major depression [12]. SSRIs have the advantages of favorable safety profiles and once-daily dosing. Unlike the TCAs, SSRIs have no potential for lethal overdose and cause few or mild adverse effects. These
activating antidepressants are typically administered in the morning to prevent insomnia, one of the potential side effects. During the first week of therapy, nausea can occur but usually subsides with tolerance. Some women experience anorgasmia as a side effect; this can be ameliorated with tolerance, a dosage reduction, or treatment with the serotonergic antihistamine cyproheptadine.

Anticholinergic effects, weight gain, sedation, and orthostatic hypotension are seen with the tertiary amine TCAs. These medications would not be a good choice for this patient because they would exacerbate her weight gain. In contrast, secondary amine TCAs cause less sedation and fewer anticholinergic effects. Side effects of bupropion include agitation, insomnia, psychosis, confusion, and weight loss. Even though the patient’s insomnia may be exacerbated, it may be a good second-line agent to facilitate weight loss or as a substitution if sexual dysfunction becomes a problem when taking an SSRI.

Table 1. Criteria for Major Depressive Episode

<table>
<thead>
<tr>
<th>Five (or more) of the following symptoms have been present during the same 2-week period and represent a change from previous functioning; at least one of the symptoms is either (1) depressed mood or (2) loss of interest or pleasure</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Depressed mood most of the day, nearly every day, as indicated by either subjective report (eg, feels sad or empty) or observation made by others (eg, appears tearful); in children and adolescents, can be irritable mood</td>
</tr>
<tr>
<td>2. Markedly diminished interest or pleasure in all, or almost all, activities for most of the day, nearly every day (as indicated by either subjective account or observation made by others)</td>
</tr>
<tr>
<td>3. Significant weight loss when not dieting or weight gain (eg, a change of more than 5% of body weight in a month), or decrease or increase in appetite nearly every day; in children, consider failure to make expected weight gains</td>
</tr>
<tr>
<td>4. Insomnia or hypersomnia nearly every day</td>
</tr>
<tr>
<td>5. Psychomotor agitation or retardation nearly every day (observable by others, not merely subjective feelings of restlessness or being slowed down)</td>
</tr>
<tr>
<td>6. Fatigue or loss of energy nearly every day</td>
</tr>
<tr>
<td>7. Feelings of worthlessness or excessive or inappropriate guilt (which may be delusional) nearly every day (not merely self-reproach or guilt about being sick)</td>
</tr>
<tr>
<td>8. Diminished ability to think or concentrate, or indecisiveness, nearly every day (either by subjective account or as observed by others)</td>
</tr>
<tr>
<td>9. Recurrent thoughts of death (not just fear of dying), recurrent suicidal ideation without a specific plan, or a suicide attempt or a specific plan for committing suicide</td>
</tr>
</tbody>
</table>

NOTE: Do not include symptoms that are clearly due to a general medical condition, or mood-incongruent delusions or hallucinations.

Table 2. CAGE Screening Questionnaire for Alcohol Abuse

<table>
<thead>
<tr>
<th>C</th>
<th>Have you ever felt you should Cut down on your drinking?</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Have people Annoyed you by criticizing your drinking?</td>
</tr>
<tr>
<td>G</td>
<td>Have you ever felt bad or Guilty about your drinking?</td>
</tr>
<tr>
<td>E</td>
<td>Have you ever had a drink first thing in the morning to steady your nerves or get rid of a hangover (ie, an Eye-opener)?</td>
</tr>
</tbody>
</table>

The National Institute of Alcohol Abuse and Alcoholism recommends using the CAGE questionnaire to screen every patient who drinks alcohol (Table 2). Two affirmative responses are a positive indication for alcoholism [14]. Using the DSM-III or DSM-III-R criteria as the standard, a CAGE questionnaire score of 2 or higher has a reported sensitivity of 73% to 81% for detecting alcohol abuse or dependence, while specificity ranges from 89% to 96% [15–17].

Screening for Alcohol Abuse

The patient’s alcohol use is further assessed using the CAGE questionnaire. During evaluation, the patient admits to drinking more than she did a year ago. She drinks 2 to 3 glasses of wine each night and at parties will have up to 4 drinks. She has never needed an eye-opener but does report feeling guilty about her drinking. Although she has considered the need to cut back on her alcohol use, she is annoyed at her husband’s urging to do so.

• Should the patient be screened for alcohol abuse?

Health Risks Associated with Alcohol Consumption

Alcohol intake of more than 6 drinks per day increases the risk of many adverse health events [18–20]. Less is known about the effects of alcohol consumption in quantities over 2 but less than 6 drinks per day. However, there have been at least 13 large prospective studies that have evaluated the...
Further, daily alcohol consumption of 2 drinks or more may be considered diagnostic of alcohol abuse and/or dependence. Tyramine and mortality may occur at doses below those typically established between alcohol consumption and breast cancer. Despite the fact that a causal connection has not been definitively established, breast cancer risk may increase with 3 or more drinks per day; however, statistical significance was demonstrated in only 1 trial (RR range, 1.2 to 2.2), whereas 2 investigations [25,26] showed that 2 or more alcoholic drinks per day significantly lowered overall mortality. Deaths from cardiovascular disease were, on average, lower across all exposure categories. In contrast, various cancers and fatal injuries were substantially increased.

The association between alcohol consumption and stroke has been examined in 5 recent large prospective studies [34–38]. Two studies [34,37] found increased risk of ischemic stroke among subjects who consumed 2 or more drinks per day; however, statistical significance was demonstrated in only 1 trial (RR, 2.0) [37]. Of the remaining 3 studies, 1 found no effect [35], while 2 [36,38] found nonsignificant protective effects. The risk of hemorrhagic stroke may increase with alcohol consumption of 2 or more drinks per day. Statistically significant increases in risk (RR range, 3.1 to 3.9) were reported by 2 studies that examined the relationship between alcoholic intake and hemorrhagic stroke [36,37].

Breast cancer risk may increase with 3 or more drinks per day, as demonstrated in 5 large prospective studies [39–43]. Two of these investigations [40,43] showed a statistical significance (RR range, 1.6 to 3.3), whereas 3 studies [39,41,42] found nonsignificant increases. Given the public health importance of this cancer, women who have 3 or more drinks per day should be counseled to reduce their alcohol intake, despite the fact that a causal connection has not been definitively established between alcohol consumption and breast cancer.

Overall, these data suggest that alcohol-related morbidity and mortality may occur at doses below those typically considered diagnostic of alcohol abuse and/or dependence. Further, daily alcohol consumption of 2 drinks or more may increase the risk of developing hypertension [44,45], traumatic injuries [46,47], and adverse drug–alcohol interactions [48,49] and may impair an individual’s social and occupational functioning. The absolute magnitude of this effect can vary widely by outcome.

Brief Interventions

Establishing a treatment plan is very important in the management of patients with alcohol use disorders. Brief interventions for treatment of hazardous or harmful drinking have been demonstrated to be effective in the primary care setting. A brief intervention is defined as “a short counseling session focused on helping a person change a specific behavior” [50]; it employs counseling strategies that are within the skill level of primary care physicians and can be performed in the course of an office visit. These techniques have been elucidated in the FRAMES acronym (Table 3) [51].

How effective are primary care interventions for alcohol problems?

Risk factors for CHD should be assessed in this patient; therefore, a lipid panel and fasting plasma glucose should be ordered. Because the patient is depressed, fatigued, and has gained weight over the past year, thyroid function should be determined by measuring thyroid-stimulating hormone (TSH) levels. Hypothyroidism can cause these symptoms and is common among women. In addition, a complete blood count (CBC) should be considered because depressed mood is often associated with iron or vitamin B12 deficiencies. Liver function studies are warranted given the patient’s alcohol use. Her abnormal breast examination indicates the need for a mammography as well as a Papanicolaou smear to screen for cervical cancer.

Initial Treatment

The physician tells the patient that her drinking puts her at risk, explaining the association of alcohol use and hypertension and the depressant effect of alcohol. The physician indicates that it is the patient’s responsibility to change her behavior and advises that she stop drinking on her own or seek counseling. The patient says that she can quit on her own. The physician also prescribes an SSRI for treatment of her depression. Laboratory studies are ordered, and a follow-up visit is scheduled for 2 weeks.
2 Weeks Later

After 2 weeks, the patient returns for a follow-up visit. She has cut down on her alcohol consumption and reports feeling better. Further history is taken, which reveals that her father died at age 61 from CHD and that her mother fractured her hip 2 years ago. Mammography shows a stable nodular density in the right breast. Results of a Papanicolaou smear and a serum β-HCG are normal. Fasting glucose is 99 mg/dL. A fasting lipid panel reveals the following: total cholesterol, 251 mg/dL; low-density lipoprotein (LDL) cholesterol, 154 mg/dL; high-density lipoprotein (HDL) cholesterol, 50 mg/dL; triglycerides, 134 mg/dL. FSH level is 99 mIU/mL and TSH level is 1.5 mIU/mL. Results of CBC and liver function tests are within normal limits.

- What risk factors for CHD does this patient have?
- What can be offered to modify these risk factors and what evidence supports these treatments?

This patient presents with several CHD risk factors, including hypertension, family history of CHD, obesity, perimenopause, sedentary lifestyle, and hypercholesterolemia. She does not smoke or have a history of diabetes.

CHD Risk Factor Modification

Research on the primary prevention of CHD in women has been relatively sparse. Although many believe that heart disease is not a serious problem for them, it is estimated that 1 in 2 women will eventually die of heart disease or stroke, whereas 1 in 25 will die of breast cancer [52]. Moreover, in the Framingham Heart Study, nearly two thirds of sudden deaths in women due to CHD were previously asymptomatic [52]. Primary care providers should aggressively address modification of CHD risk factors in women.

Smoking

This patient should be commended on her nonsmoking status, as smoking is the leading preventable cause of CHD and death in women. The risk in heavy smokers (20 or more cigarettes per day) is 2 to 4 times higher than in nonsmokers [53]. Light smokers (1 to 4 cigarettes per day) double their risk compared with those who have never smoked [54]. People who quit smoking begin to reduce CHD risk within months, and after 3 to 5 years achieve the risk level of nonsmokers. In addition, smoking is the major risk factor in developing lung cancer, which is the most common malignancy seen in women.

Blood Pressure

The patient’s blood pressure should be lowered by decreasing her alcohol and salt consumption, encouraging weight loss and exercise, and, if necessary, initiating pharmacologic intervention. The association between hypertension and CHD in women is documented in epidemiologic [55–58] and prospective [59–63] studies. Isolated systolic hypertension is a risk for older women and affects an estimated 30% of women older than 65 years of age [56]. In the Systolic Hypertension in the Elderly Program (SHEP) [57], in which women comprised 57% of the study population, any hypertensive therapy reduced the incidence of CHD by 25% and stroke by 36%. A subgroup meta-analysis of databases from 7 studies in the Individual Analyses of Antihypertensive Intervention Trials demonstrated a significant decrease in stroke and major coronary vascular disease events in women. These trials, which primarily used β blockers and thiazide diuretics, showed an equal reduction in relative risk for both men and women [58]. A meta-analysis [58] of randomized treatment trials involving 37,000 subjects (47% women) evaluated therapy of 3 to 6 years’ duration for mild to moderate hypertension. A mean decrease of 6 mm Hg in diastolic pressure significantly reduced overall mortality from vascular disease by 21%, fatal and nonfatal stroke by 42%, and fatal and nonfatal CHD by 14%. Weight reduction and dietary intervention are important in preventing and treating hypertension as well [55]. Studies of nonpharmacologic treatment for hypertension in which 30% to 60% of the patients were women showed moderate success [64–66]; however, none of these trials have reported results separately for women [63].

Body Mass Index

Direct positive association between obesity and the risk of CHD has been demonstrated in a number of large, prospective cohort studies involving women [67–69]. Results from the Nurses’ Health Study, involving over 120,000 middle-aged women, indicated that the risk of CHD was over 3 times higher among women with a body mass index (BMI) of 29 or higher than among those with a BMI lower than 21 [69]. A large portion of the excess risk is attributable to the influence of adiposity on blood pressure, glucose tolerance, and lipid levels after adjustment for these variables. A moderate residual effect persists that may be caused by other mechanisms [69]. This patient’s current BMI is 29.2; therefore, she needs to lose 25 to 30 lb to attain a high-normal BMI of 25.

Cholesterol

Increased total serum cholesterol and LDL cholesterol are CHD risk factors in both women and men. From 1980 to 1991, more than 50% of women older than 55 years had serum cholesterol levels greater than or equal to 240 mg/dL [70]. In 1 meta-analysis, hyperlipidemia predicted CHD mortality in women younger than 65 but not in older women [71]. Observational studies further suggest that triglycerides may be an important risk factor for women and the elderly [72]. In
contrast, an increased level of HDL cholesterol is a particularly strong predictor of decreased risk of CHD in women [73–75]. HDL cholesterol was second only to age as a predictor of death from cardiovascular causes among women in the Lipid Research Clinic Follow-up Study [74].

Very few randomized trials of lipid-lowering therapy for primary prevention of CHD in women have been done. Three such trials that included women showed no evidence for reduction in CHD or total mortality [76]. Although data from randomized trials have yet to provide definitive evidence that lowering cholesterol levels reduces women’s risk of CHD, the consistency of observational data suggests that intervention to lower LDL cholesterol levels and raise HDL levels would benefit women. Secondary prevention trials of lipid-lowering therapy in women with CHD not only suggest substantial treatment benefits but also point to a significant undertreatment of menopausal women with CHD.

The patient should be counseled to begin a low-fat diet, with a goal of lowering her LDL level to 130. If dietary changes are not successful after 6 months, pharmacologic intervention should be considered. Estrogen replacement therapy reduces LDL cholesterol in postmenopausal women and should be considered. Statins may be used as first-line therapy in these women as well.

Diet
Compelling evidence from epidemiologic studies indicate that diets low in saturated fats and high in fruits, vegetables, whole grains, and fiber are associated with a reduced risk of CHD [77]. The Nurses’ Health Study, for example, showed a significant inverse association between intake of dietary fiber and risk of CHD. The association was confined to fiber from cereal sources and demonstrated a 34% lower risk of total CHD in women in the highest quintile of cereal fiber intake than in those in the lowest quintile [78]. Recently published findings from the Iowa Women’s Health Study reported a 30% to 36% reduction in risk of ischemic heart disease when comparing extreme quintiles of whole-grain food intake [79]. The reduction in CHD associated with increased cereal fiber is greater than expected from beneficial effects on serum cholesterol level alone. Plausible mechanisms include delayed absorption of macronutrients [80] leading to increased insulin sensitivity [81] and lower triglyceride levels [82–86]. Additionally, the Nurses’ Health Study showed that frequent nut consumption was associated with a reduced risk of both fatal CHD and nonfatal myocardial infarction [87]. Other research has recently linked trans-fatty acids to adverse lipid profiles and increased CHD risk [88].

Exercise
The patient should also be advised to exercise daily for at least 30 minutes. Most of the epidemiologic studies of exercise and CHD have been conducted in men; however, studies in women suggest a comparable 50% risk reduction among active individuals compared with their sedentary counterparts. Evidence indicates that even activity of moderate intensity, such as brisk walking, is associated with a substantial reduction in CHD [89].

Monitoring for Diabetes
Although this patient has a fasting glucose within the normal range, she should be counseled regarding diabetes symptoms and have her glucose checked annually. Diabetes mellitus appears to be an even stronger risk factor for CHD in women than in men [90]. It is associated with a three- to sevenfold elevation in women’s CHD risk, whereas in men the elevation is only two- to threefold [90].

Hormone Therapy
The patient should be counseled regarding the risks and benefits of HRT. The Postmenopausal Estrogen/Progestin Replacement Study (PEPI) established the effectiveness of HRT in the primary prevention of CHD. This trial showed that there was a significant lowering of LDL cholesterol with oral equine estrogen even with the addition of medroxyprogesterone or micronized natural progesterone. Estrogen at a dose of 0.625 mg without progestin had the most favorable effect on HDL; however, the high rate of endometrial hyperplasia (at least 10%) makes this an unacceptable regimen for women with a uterus [91]. Observational studies in the general population have consistently shown a 50% reduction of CHD in women who used HRT [92].

The recent findings from the Heart and Estrogen/progestin Replacement Study (HERS) [93] have challenged previous observational data regarding the role of hormones in preventing cardiovascular events. HERS was the first large-scale randomized clinical trial to test the efficacy and safety of HRT on clinical cardiovascular outcome in older postmenopausal women with confirmed coronary disease. The overall null result from HERS does not support the initiation of HRT in older postmenopausal women with confirmed CHD. The HERS trial included women with coronary disease younger than 80 years, with a mean age of 66.7 years. However, results from the HERS trial may not apply to women free of vascular disease.

Alternatives to traditional HRT include soy phytoestrogens and selective estrogen receptor modulators (SERMs). Due to a lack of sufficient data, no recommendation regarding their use for preventing CHD can be made at this time.

Addressing of CHD Risk Factors
The physician discusses with the patient ways to reduce her risk for heart disease. During the discussion, the patient expresses concerns about HRT and breast
Hormone Replacement Therapy

Between the ages of 45 and 55, most women experience menopause, the time when menstruation permanently stops. With menopause comes a decrease in the body’s production of estrogen, a female sex hormone produced in the ovaries. If you are a woman approaching or going through menopause, your doctor may recommend hormone replacement therapy (HRT), a treatment that “replaces” the estrogen that is no longer produced naturally by the body after menopause.

Types of HRT regimens
The most common HRT regimen consists of estrogen with or without progestin in the form of tablets. Progestin is a synthetic form of progesterone, another female hormone. Estrogen combined with progestin is known as “combination therapy.” Combination therapy may be cyclic (progestin tablet taken 10 to 14 days each month) or continuous (estrogen and progestin taken daily, either as 2 different doses or as a single pill). Many women prefer continuous therapy because it does not cause monthly bleeding.

Estrogen patches and creams are available, but may not have the same effects as the oral tablets.

Why should I take HRT?
Relief of menopausal symptoms. HRT is effective in reducing the discomfort of menopausal symptoms, such as hot flashes, vaginal tissue dryness, and sleep disturbances. HRT also improves the elasticity of urinary tract tissue, reducing the incidence of stress incontinence and urinary tract infections. HRT may also be helpful in relieving the depression and mood swings that may occur during menopause.

Protection against osteoporosis. Estrogen deficiency is the primary cause of osteoporosis, a condition characterized by loss of bone density. Women with osteoporosis are at higher risk for hip fracture, a potentially devastating condition in older persons. Between 10% to 20% of patients who suffer a hip fracture do not survive 1 year following the fracture, and 25% will need to enter a nursing home. HRT prevents the decline of bone density and significantly reduces a woman’s risk of hip and other fractures.

Protection against heart disease. Heart disease is the number one killer of American women and is responsible for half of all deaths of women over age 50. HRT raises “good” cholesterol (HDL) and lowers “bad” cholesterol (LDL) and may reduce risk of heart disease. However, HRT may not reduce risk of heart problems in older women who already have heart disease.

What are the risks and side effects of taking HRT?
Endometrial cancer. Women who take HRT are at high risk of developing endometrial cancer (cancer of the lining of the uterus). However, women who take combination therapy (estrogen plus progestin) have a much lower risk. Endometrial cancer can be treated by hysterectomy (removal of the uterus).

Breast cancer. Concern about breast cancer is one of the most common reasons women give for not taking hormones. Long-term HRT use (more than 10 years) may increase risk of breast cancer.

Other side effects. Women taking HRT may experience breast tenderness, irregular bleeding, fluid retention, or headaches. These side effects occur in a minority of women. Some women need to discontinue HRT due to side effects.

What are alternatives to HRT?
Selective estrogen receptor modulators (SERMs) and bisphosphonates are 2 drug treatments that are available as alternatives to HRT. SERMs, such as raloxifene, help prevent osteoporosis and lower cholesterol without the risks of breast or uterine cancer. Bisphosphonates, such as alendronate and risedronate, are nonhormonal treatments that are also effective in preventing osteoporosis. However, there are drawbacks to using these alternatives: SERMs are weaker than estrogen against osteoporosis and carry the same risks of blood clots; bisphosphonates, especially if taken incorrectly, may increase gastrointestinal problems and the risk of getting esophageal ulcers.

Weighing the benefits and risks
Weighing the benefits and risks is part of all medical decisions. Many physicians and researchers feel that the potential beneficial effects of HRT on heart disease, osteoporosis, and general quality of life outweigh the possible risk of developing cancer. Other physicians are concerned about the possible negative effects of HRT and instead recommend exercise, changes in diet, or other medications. The decision to take HRT is an individual one to be made in cooperation with your doctor based on your current health status, risk factor profile, preferences, and health goals.
PERIMENOPAUSE

cancer risk; however, she has heard that HRT protects against osteoporosis, which she is also concerned about due to family history of hip fracture. The primary care physician recommends HRT based on the patient’s medical and family history but expresses understanding toward the patient’s concerns about breast cancer.

- What advice should be given to patients who are concerned about breast cancer risk?

Breast cancer is diagnosed in more than 170,000 women each year in the United States [94]. Primary care physicians must become skilled at evaluating breast cancer risk and counseling women about its effect on medical decisions [95]. The most commonly used model to predict breast cancer risk was developed by Gail et al [96] based on findings from the Breast Cancer Detection Demonstration Project, a large mammographic screening program conducted in the 1970s. This model assigns a risk score based on number of first-degree relatives with breast cancer, age at menarche, age at first live birth, and number of breast biopsies (0, 1, or ≥ 2) as well as race or ethnicity. Risk score is then multiplied by an adjusted population risk of breast cancer to determine individual risk. Because the effects of risk factors interact and vary with age, breast cancer risk is most easily calculated with a software program available from The National Cancer Institute (http://bcra.nci.nih.gov/brc/q1.htm).

Observational studies suggest that HRT halves the risks of CHD and osteoporosis but increases the risk of breast cancer by 30% to 40% [97–99]. Raloxifene, a SERM, provides less protection than HRT against CHD and osteoporosis but may reduce the risk of breast cancer [100–102]. As a woman’s risk of breast cancer increases, the relative benefit of raloxifene may increase.

Tamoxifen, another SERM, is the first drug shown to reduce the incidence of breast cancer in healthy women. The Breast Cancer Prevention Trial randomly assigned more than 13,000 women with a 5-year breast cancer risk of 1.7% or more to tamoxifen or placebo [103]. Over a mean follow-up period of 4 years, tamoxifen had reduced the incidence of breast cancer by 49% compared with placebo.

Physical activity has been shown to modestly lower the risk of breast cancer in several studies [104,105]. Monounsaturated dietary fat has been associated with a decreased risk of breast cancer and polyunsaturated dietary fat with an increased risk in some studies; however, no associations like these have been seen in other research [106,107]. In addition, secondary prevention by mammographic screening in women 50 years and older reduces mortality from breast cancer. [108] All postmenopausal women should have yearly mammographic screenings.

This patient’s risk of breast cancer is 1.3%, compared with 0.6% in a woman her age with no risk factors. In the Breast Cancer Prevention Trial [103], eligible women had a breast cancer risk of 1.7% or greater. The women in this study were selected due to their high risk of invasive cancer. With this patient’s risk of 1.3%, it is acceptable to use HRT (as opposed to a SERM), which will provide protection against CHD and osteoporosis.

- How should risk of osteoporosis be managed in peri- and postmenopausal women?

Evaluation for Osteoporosis

The goal of evaluating women for osteoporosis is to establish a diagnosis based on bone mass measurement [109]. In peri- and postmenopausal women, assessing for fracture risk and need for therapy are also important. A history and physical examination are essential to an evaluation for any woman receiving routine care [110]. Demographic factors to consider include age, gender, and race; risk is increased with advancing age, in females, and in white women. A patient’s history should include family history of osteoporosis (especially maternal history of a hip fracture), cigarette smoking, caffeine and alcohol intake, evaluation of nutritional status, exercise regimen, and history of premature menopause [111–114]. The history should also focus on diseases known to be secondary causes of osteoporosis, which can be drug-related, endocrine, gastrointestinal, neoplastic, renal, or rheumatologic [112]. Physical examination may reveal some signs of secondary diseases associated with osteoporosis. Primary osteoporosis is often not evident until a fracture occurs or until the disease is in later stages, with decreased height or kyphosis.

The most commonly used measurement to diagnose osteoporosis and predict fracture risk is based on the assessment of bone mass density (BMD), which is primarily determined by the mineral content of bone. The gold-standard diagnostic imaging test for determining a patient’s BMD is dual energy x-ray absorptiometry (DEXA) [115]. This technique uses 1 high-energy and 1 low-energy beam. After subtracting for soft tissue absorption, the uptake by bone is used to calculate a BMD value. Two scores have been established by the World Health Organization: the T score, which compares BMD to that of a 25- to 30-year-old woman, and the Z score, which compares BMD to that of a same-age, same-sex individual. Each standard deviation below the normal T-score mean increases fracture risk two- to threefold. The DEXA scan is noninvasive, delivers less radiation than a chest radiograph, is well tolerated by the patient, has high specificity and sensitivity, and is reproducible [115].
Although guidelines for DEXA are not universal, the value of bone density in predicting fracture risk is established. The general consensus is that bone density measurement should be considered in patients on glucocorticoid therapy for 2 months or more and in patients with other conditions that place them at high risk for osteoporotic fracture [116]. Unfortunately, the practice of universal screening—especially in perimenopausal women—has not been established. There are several unknowns in this approach. First, many women would need to be treated to prevent a single fracture. For example, in white women aged 50 to 59 years, 70 DEXA tests would be required to prevent 1 hip or vertebral fracture over a 5-year period. Second, value has been not established for the common practice of beginning therapy in the perimenopausal period to prevent fractures later in life. Until there is solid evidence to support the cost-effectiveness of routine screening or the efficacy of early initiation of preventive drugs, an individualized approach is recommended. Bone density measurement should be considered when it would help the patient decide whether to institute treatment to prevent osteoporotic fracture [109].

Treatment of Osteoporosis

During perimenopause, primary prevention of osteoporosis is primarily related to lifestyle modifications. Growth in bone size and strength occurs during childhood, but bone accumulation is not complete until the third decade of life. It is during this time of bone growth that nutrition, exercise, and absence of smoking are vitally important to achieve an optimal peak bone mass [109]. However, in perimenopause, continued attention to lifestyle factors related to osteoporosis acceleration will slow the progression of decreasing bone mass.

Calcium is the specific nutrient most important for attaining peak bone mass and for preventing and treating osteoporosis. Sufficient data exist to recommend specific dietary calcium intakes at various stages of life. For perimenopausal women, calcium intake should be maintained at 1000 to 1500 mg/day. It is believed that only 50% to 60% of the population meets this requirement [117]. Vitamin D is required for optimal calcium absorption and thus is important for bone health. A recommended daily vitamin D intake of 400 to 600 IU has been established for adults [117].

Regular physical activity has been investigated as it relates to bone health. There is strong evidence that physical activity early in life contributes to higher peak bone mass. Some evidence indicates that resistance and impact exercise may be the most beneficial [118]. Exercise during the later years of life, in the presence of adequate calcium and vitamin D intake, probably has a modest effect on slowing a decline in BMD [119]. Perimenopausal women also should be counseled on the deleterious effects of smoking on bone density. Tobacco is the most common risk factor for osteoporosis. Spine BMD is decreased in smokers compared with nonsmokers, and menopause occurs earlier in women who smoke [114]. Nicotine accelerates bone loss and decreases intestinal calcium absorption in the elderly [113,114].

Trial of HRT

The patient’s risk factors for osteoporosis include a white race, female gender, maternal history of hip fracture, and sedentary lifestyle. She has never smoked, is moderately overweight, and is perimenopausal. She decides to start HRT and agrees to lifestyle modifications. DEXA scanning is not necessary as HRT therapy will provide protection against bone loss and testing would be unlikely to result in a change in therapy. The patient should have an annual history, complete physical examination, and mammography while taking HRT.

6 Months Later

At 6 months’ follow-up, the patient looks and feels much better. She has lost 10 lb, tries to exercise at least 4 times a week, has stopped using alcohol altogether, and reports that she is enjoying her life again. She has done well on the SSRI but has stopped and restarted her HRT. Initially, she felt better on HRT but stopped after hearing a report about breast cancer. After a telephone conversation with her primary care physician about her concerns, she reinstituted HRT and now thinks she will continue taking it.

SUMMARY

The primary care physician assumes a critical role in helping women effectively transition through the perimenopausal period. Both primary and secondary prevention strategies are necessary. History, physical, and laboratory evaluation confirm hormonal status and assess for underlying disease. The physician should take this opportunity to assess stress level, mental health, alcohol use, and coping mechanisms of patients and to provide appropriate management, counseling, and referral. The physician and patient should engage in frank discussions about hormone replacement, diet, and physical activity to assure successful aging.

The authors thank Ruth Ranalletta for manuscript preparation and Robert Lubitz, MD, MPH, for editorial advice.

Author addresses: Dr. Monroe: 8220 Naab Rd. #200, Indianapolis, IN 46260, jamonroe@stvincent.org. Dr. Ledyard: 10122 E. 10th St., Indianapolis, IN 46229, rtledyard@aol.com.

References

Copyright 2000 by Turner White Communications Inc., Wayne, PA. All rights reserved.
EVALUATION FORM: Clinical Decision Making During the Perimenopause

To receive 1 hour of AMA PRA Category 1 CME credit, read the article named above and mark your responses on this form. You must complete all parts to receive credit. Then return this form using the fax number or address appearing at the bottom of this page. A certificate awarding 1 hour of category 1 CME credit will be sent to you by fax or mail. This CME Evaluation Form must be fax marked or postmarked within 1 year of this JCOM issue date. Please allow up to 4 weeks for your certificate to arrive.

Part 1. Please respond to each statement.

I was provided with new information pertinent to my practice
I reaffirmed a specific skill or knowledge.
This article will help with clinical decision making.
Relevant clinical outcomes are addressed.
The case is communicated in a manner that kept my interest.
The case presentation is realistic and effective.
I could easily interpret the tables and figures.
My attitude about this topic changed in some way.
Additional comments: __
__

Part 2. Please complete the following sentence.
As a result of reading this case study, I . . .

❏ see no need to change my practice.
❏ will seek more information before modifying my practice.
❏ intend to change the following aspect(s) of my practice: (Briefly describe)

__
__

Signature: ______________________ Date: ______________________

Part 4. Identifying information: Please PRINT legibly or type the following:
Name: ______________________ Fax number ______________________
Address: ______________________ Telephone number ______________________
Social Security number: ______________________ (Required and confidential)

Medical specialty: ______________________

SEND THE COMPLETED CME EVALUATION FORM TO:
BY FAX: 313-577-7554
BY MAIL: Wayne State University Division of CME
5-E-UHC, 4201 St. Antoine, Detroit, MI 48201

Wayne State University School of Medicine is accredited by the Accreditation Council for Continuing Medical Education to provide continuing medical education for physicians.
Wayne State University School of Medicine designates this CME activity for a maximum of 1 hour of category 1 credit toward the Physician’s Recognition Award of the American Medical Association. Physicians should claim only those hours of credit actually spent in the educational activity.