Closed ruptures of flexor tendons are rare; however, when they occur, the site of rupture is almost exclusively at the tendon-bone insertion and less frequently at the musculotendinous unit. Midsubstance ruptures are extremely rare and are usually due to an underlying cause such as fracture, cystic degeneration, rheumatoid arthritis, or sequelae following local steroid injection. The most common mechanism of injury for spontaneous rupture of the flexor tendons occurs when the hand is engaged in resisted flexion.

This report describes the case of a patient who experienced closed rupture of the flexor digitorum profundus (FDP) tendon at the A2 pulley level after a blunt trauma to the volar aspect of the left little finger, with no evidence of underlying tendon pathology. Anatomy and etiology are also discussed.

CASE PRESENTATION
Presentation to the Emergency Department

A 33-year-old woman presents to the emergency department after her left hand is struck by the rearview mirror of a car. The patient has sustained a direct blunt trauma to the volar aspect of the left little finger, with the little finger hyperextend.

Physical and Radiographic Examination

Examination of the left hand reveals swelling and tenderness over the proximal phalanx of the left fifth digit. Neurovascular examination reveals intact function. The patient is unable to flex the distal interphalangeal (DIP) joint but has full range of motion of the proximal joint. Radiographic examination shows no fracture or dislocation.

Diagnosis and Treatment

The patient is taken to the operating room for surgical repair of the FDP tendon under an ulnar nerve block. Because the surgeon’s initial impression is that the injury is an avulsion at the bony insertion of the distal phalanx, this area is explored first. However, the tendon’s insertion point is found to be intact. A midsubstance rupture is identified at the A2 pulley level (zone II) of the FDP tendon (Figure 1). The flexor digitorum superficialis (FDS) tendon is intact. No evidence of tenosynovitis, cystic degeneration, or other abnormalities is identified. A Bruner zigzag incision is extended to find the proximal end of the severed tendon; this area is found at the level of the distal palmar crease. Tendon repair is performed using a modified Kleinert technique with 3-0 nylon and a running epitendinous 6-0 suture. A dorsal splint is used to immobilize the wrist for 1 week, with wrist flexion at 45 degrees and metacarpophalangeal joints (MPJs) at 90 degrees. A dynamic splint is then applied for active extension/pasive flexion for an additional 5 weeks.

Clinical Findings at Follow-up

The patient is not compliant with follow-up visits and is last seen 2 months after surgery, at which time the tendon remained intact. Active range of motion for the MPJ is 0 to 60 degrees; proximal interphalangeal (PIP) joint, 0 to 45 degrees; and DIP, 0 to 15 degrees. Passive range of motion for the MPJ is 0 to 70 degrees; PIP, 0 to 90 degrees; and DIP, 0 to 60 degrees.

DISCUSSION

Closed rupture of a flexor tendon is rare. The profundus tendon insertion on the distal phalanx is the usual site of injury and, as such, is appropriately termed an avulsion. A profundus avulsion injury results in the inability to flex the DIP joint. Leddy and Packer have described three types of profundus avulsions. In type I,
the tendon retracts to the palm with disruption of the entire vincular system. Type II avulsion is characterized by retraction of the tendon to the PIP level that spares the vinculum longum. In type III, the profundus tendon avulsion occurs in addition to a fracture of the distal phalanx base. Rarely, a type III-A injury occurs in which the tendon avulsion and fracture occur separately.

Anatomy and Etiology

The aforementioned injuries occur in zone I of the flexor tendon system or distal to the FDS insertion (Figure 2). Zone II, the “critical zone,” where the FDS and FDP tendons run together in the flexor sheath, extends from the first annular pulley (Figure 3) to the insertion of the FDS tendon. Closed ruptures in zone II are extremely rare and have been described infrequently in the literature. In the few cases that have been reported, the cause was an underlying pathology such as infection, previous injury, chronic repetitive injury, bony irregularities, or sequelae after a fracture.3-5 Other causes may be cystic degeneration, rheumatoid arthritis, or sequelae following local steroid injections. Boyes et al4 reviewed 78 patients who had closed ruptures and found that 74 patients experienced avulsions at the distal phalanx. They described three patients in whom the rupture occurred at the level of the lumbricals in the midpalm in which both the FDP and FDS were disrupted. Two of these patients had no evidence of underlying pathology.

Naam5 reported on 13 patients who had spontaneous ruptures of the FDP tendon; the ruptures in all except one of these patients occurred in the lumbrical area (zone III) and were caused by forced extension of the finger while under maximum flexion of the muscle. Imbriglia and Goldstein2 described 10 patients who had intratendinous ruptures of the FDP tendon of the small finger. Again, all ruptures occurred at work with the hand engaged in resisted flexion; in two patients
the ruptures were just distal to the A2 pulley level. Yang et al reported on one patient who had a closed profundus rupture in zone III at the origin of the lumbrical muscle.

Although all of the aforementioned case reports describe a midsubstance rupture of an apparently normal flexor tendon, the mechanism of injury was always forced flexion against resistance. After review of the literature, the case presented here is the only one the authors could identify in which the mechanism of injury was either hyperextension or blunt trauma to the tendon against the underlying phalangeal condyle. The current case presentation also demonstrates that the little finger is more susceptible to such injury. As is true for laceration repairs in zone II, hyperextension or blunt trauma injuries to the FDP tendon of the little finger have a poorer prognosis in zone II as compared with other zones.

SUMMARY

Closed rupture of the FDP tendon is rare. The most common site of rupture is the tendon-bone insertion, called an avulsion; a less frequent site is at the musculo-tendinous unit. A closed rupture of the FDP is clinically diagnosed by the patient’s inability to flex the distal phalanx. Midsubstance ruptures are even more unique and are usually due to underlying pathology such as fracture, cystic degeneration, rheumatoid arthritis, or sequelae following local steroid injection.

REFERENCES