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A pproximately 20,500 new cases of primary 
brain tumor are diagnosed annually.1 Caus-
ing an estimated 13,000 deaths each year, pri-
mary brain tumors are responsible for more 

deaths than Hodgkin’s lymphoma, cervical cancer, and 
melanoma combined.1 Of these primary brain tumors, 
approximately 50% are gliomas, and 50% of these are 
glioblastoma multiforme (GBM).2 GBM is the most 
common and aggressive primary brain tumor, with a 
mortality that nears 100%3 and a median survival of less 
than 1 year. Physician-scientists have had limited success 
in prolonging survival since the introduction of post-
surgical radiation therapy in the late 1970s.3–9 The chal-
lenge in treating GBM lies in the unique environment 
of the central nervous system (CNS). Unlike other 
organ systems, the CNS has no regenerative capacity, 
leading to devastating consequences if disturbed. Ad-
ditionally, the blood-brain barrier (BBB) renders many 
conventional chemotherapeutics ineffective.2 

Fortunately, a new era in the care of GBM patients is 
emerging in which the efforts of neurosurgeons, neuro
oncologists, neuropathologists, radiation oncologists, 
neuroradiologists, and palliative care specialists are co-
ordinated. This approach facilitates collaboration and 
translational research and has led to recent advances 
in care. This article provides a brief overview of GBM, 
including established diagnostic and therapeutic op-
tions, and discusses recent progress in the disciplines 
involved in the care of patients diagnosed with GBM.

CLASSIFICATION

Brain tumors are a heterogeneous group of malignan-
cies derived from tissues of different origins (Table 1).10 
It is important to differentiate between primary brain 
tumors—those originating in the CNS—and metastatic 
tumors.10 Among primary tumors of malignant potential 
are the gliomas, which are divided into astroglial and oli-
godendroglial tumors10 and further classified by degree of 
aggressiveness as either low grade (World Health Organi-

zation [WHO] grade II) or high grade (WHO grades III  
and IV).3 The tumors commonly known as astrocytomas 
are astrocytoma (WHO grade II), anaplastic astrocy-
toma (WHO grade III), and GBM (WHO grade IV).10  
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TAKE HOME POINTS

•	 Glioblastoma multiforme (GBM) is the most com-
mon and aggressive primary brain tumor, with a 
mortality of nearly 100% and a median survival of 
less than 1 year. 

•	 The presenting symptoms of GBM can be focal 
based upon brain location or generalized due to 
increases in intracranial pressure and mass effect; 
headache, seizure, and change in mental status 
occur most frequently. 

•	 Contrast-enhanced magnetic resonance imaging 
is the standard diagnostic modality for intracranial 
malignancies, while standard therapy for GBM 
includes gross total resection of the tumor followed 
by postoperative external beam radiotherapy. 

•	 Routine seizure prophylaxis with an antiepileptic 
drug provides no benefit in patients with brain tu-
mors who do not have a history of seizures. 

•	 Areas of development in the management of GBM 
include using pathologic analysis of tumor speci-
mens to select patients for adjuvant chemotherapy 
and use of agents and systems that facilitate local 
delivery of chemotherapeutic agents or radiation 
to tumors or the postresection tumor bed.
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The high-grade astrocytomas (WHO grades III and IV) 
account for the majority of astrocytic tumors and are col-
lectively referred to as malignant gliomas.11 The WHO 
classification has significant implications in both treat-
ment and prognosis.3 The progression in astrocytomas 
from WHO grade II to IV is based on the histopathologic 
features of nuclear and cellular pleomorphism, degree 
of cellularity, mitotic activity, microvascular proliferation, 
and presence of necrosis.3,11 Accordingly, as the most 
aggressive of these tumors, GBM is characterized by 
marked endothelial proliferation and cellular heteroge-
neity as well as broad zones of necrosis with peripheral 
palisades of tumor cells and numerous mitotic figures 
(Figure 1).12 

PATHOGENESIS 

GBM can occur as a primary or secondary neoplasm: 
a primary lesion transforms directly from normal astro-
glial cells, whereas a secondary lesion progresses from 
a lower grade malignancy to a grade IV malignancy.13 

Primary GBM tends to occur in an older patient popu-
lation (> 55 yr), while secondary GBM tends to occur in 
younger adults (< 45 yr).13 Although phenotypically sim-
ilar, these 2 types of GBM occur through the accumula-
tion of different mutations (Figure 2).13 Inactivation of 
tumor suppressor genes and activation of oncogenes 
leads to altered transcription of proteins involved in 
normal cellular homeostasis, cell-cycle regulation, and 
interaction with other cells in the CNS.11 These changes 
allow the tumor cells to forgo apoptotic processes and 
assume a malignant phenotype capable of growth, pro-
liferation, and infiltration.11 From an etiologic stand-
point, environmental factors such as smoking, diet, 
and alcohol intake have not been linked to GBM,10 al-
though it is suggested that high doses of cranial irradia-
tion and occupational exposure to some toxins may be 
linked to increased incidence of gliomas.10,14,15 Glioma 
risk attributable to inheritance has been estimated at 
4%16,17 and is most commonly associated with neurofi-
bromatosis, tuberous sclerosis, Turcot’s syndrome, and 
Li-Fraumeni syndrome.3,10 

CLINICAL PRESENTATION 

Given the rapid progression of GBM, the impor-
tance of a keen diagnostic acumen and a low threshold 
of suspicion among primary care physicians cannot be 
over emphasized. The presenting symptoms of GBM 
are varied (Table 2 and Table 3)18,19 and can be focal 
based upon location in the brain, or generalized due 
to increases in intracranial pressure and mass effect.20 
The 3 common phenomena of headache, seizure, 
and change in mental status merit further discussion 
as their occurrence is nearly universal in the natural 
history of GBM.18 Headache is the most common pre-
senting symptom in patients with malignant glioma.18 
In general, the pain is ipsilateral to the hemisphere 
containing the tumor19 and is described as intermittent, 
dull, and nonthrobbing.21,22 These symptoms are simi-
lar to common tension headache and can be differenti-
ated by eliciting a history of recent change in headache 
quality, new-onset headache in an adult patient, or an 
association with symptoms indicative of increased in-
tracranial pressure (ICP).19,21,22 Symptoms of increased 
ICP include pain that wakes the patient at night, is 
worse with activity, is exacerbated by cough or the Val-
salva maneuver, or is accompanied by nausea and vom-
iting. Symptoms of increased ICP are indications for 

Table 1. Common Brain Tumors

Benign primary tumors

Acoustic neuromas

Choroid plexus papillomas

Colloid cysts

Craniopharyngiomas

Epidermoid tumors

Hemangioblastomas

Meningiomas

Pilocytic astrocytomas

Pituitary adenomas

Malignant primary tumors

Chordomas

Choroid plexus carcinomas

Germ cell tumors

Gliomas

Astroglial neoplasms

Low-grade astrocytomas

Anaplastic astrocytomas

Glioblastoma multiforme

Ependymomas

Gangliogliomas

Mixed gliomas

Oligodendrogliomas

Medulloblastomas

Pineal cell tumors

Pituitary carcinomas

Primary central nervous system lymphoma

Primitive neuroectodermal tumors

Metastatic tumors

Meningeal carcinomatosis

Single or multiple metastases

Adapted with permission from Black PM. Brain tumors. Part 1. N Engl 
J Med 1991;324:1471–6. Copyright © 1991 Massachusetts Medical 
Society.  All rights reserved.
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immediate neuroimaging.19,22,23 Another indication for 
neuroimaging is new-onset seizure in patients without 
a history of epilepsy,7 as seizure is the presenting symp-
tom in 32% of malignant glioma patients18 and 10% to 
20% of adults with new-onset seizures will eventually be 
diagnosed with some form of CNS malignancy.24 Often 
more subtle in nature, an alteration in mental status is 
the presenting symptom in 16% to 34% of malignant 
glioma patients.18 Family members or patients may 
describe alterations in concentration, memory, affect, 
personality, or initiative.19 These changes are typically 
much less insidious than the changes seen in patients 
with dementia and should prompt further evaluation.18

STANDARDS OF CARE AND GLIOMA OUTCOMES

With few exceptions, studies aimed at the manage-
ment of malignant glioma have been retrospective in 
nature, leading to controversy over standards of care.25 
Prior to publication of the Glioma Outcomes (GO) 
Project study in 2003, there had never been a compre-
hensive resource from which to draw evidence-based 
treatment guidelines for the management of this dis-
ease.18 This groundbreaking study enrolled 788 patients 
at 52 clinical sites between October 1997 and July 2000 
and made available practice pattern and outcomes data 
for 565 newly diagnosed malignant glioma patients. 
The goal was to delineate standards of care from di-
agnosis until death and to pinpoint areas in need of 
further research. The GO Project elucidated trends 
in clinical presentation that emphasize the critical im-
portance of primary care physicians in facilitating early 
diagnosis and also served to establish current trends in 
therapeutics and supportive care.18 The mainstays of 

contrast-enhanced magnetic resonance imaging (MRI) 
for diagnosis, surgical craniotomy with attempt at gross 
total resection, and postoperative external beam ra-
diotherapy (EBRT) are applied in the management 
of nearly all newly diagnosed cases of GBM.18 Support-
ed by the National Comprehensive Cancer Network 
(NCCN),26 these therapeutic recommendations have 
remained unchanged since the late 1970s.4–9

Magnetic Resonance Imaging

Used for diagnosis of 92% of malignant gliomas,18 
contrast-enhanced MRI has emerged over the past 2 de-
cades as the gold standard for imaging of intracranial ma-
lignancies.3 Coupled with high clinical suspicion, there 
are several key characteristics on contrast-enhanced MRI 
suggestive of GBM (Figure 3). On a T1 pulse sequence, 
GBM appears as a poorly defined, heterogeneous le-
sion27 displaying ring enhancement.3 GBM tumors are 
frequently located in the frontal or temporal lobes of the 
cerebral hemispheres, sparing the more superficial cor-
tex and infiltrating deep structures.28 The heterogeneous 
signal intensity is due to cysts, hemorrhage, calcification, 
and necrosis and is often accompanied by surrounding 
vasogenic edema best seen as a hyperintensity on T2 
pulse sequences.28 In addition, the combination of mass 
effect27 and characteristic spread across the corpus cal-
losum to the contralateral cerebral hemisphere to form 
a characteristic “butterfly” lesion28 are findings virtually 
pathognomonic for GBM. While MRI has advantages 
such as precision in detecting tumor extent with low 
sensitivity to bony artifacts, there are instances in which 
computed tomography is the preferred modality,29 such 
as defining bony landmarks for craniotomy, when MRI 

Figure 1. Histopathologic sections of glioblastoma multiforme. (A) Pseudopalisading cells (arrowheads) are seen organized around areas 
of necrosis (stars) with adjacent prominent vascular channels (arrows). (Hematoxylin-eosin × 50). (B) Both vascular hyperplasia (arrows) 
and abundant mitotic figures (arrowheads) are recognized in a highly cellular and pleomorphic background. (Hematoxylin-eosin × 200).

A B
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is contraindicated, or for immediate postoperative feed-
back of complications such as hemorrhage, infarct, or 
pneumocephalus.29

Supportive Care

Peritumoral edema can lead to functional compro-
mise depending on location and, more importantly, the 
life-threatening sequelae of mass effect and herniation.30 
Accordingly, essentially all patients diagnosed with ma-
lignant glioma are treated with corticosteroids in the 
perioperative period.18 It is critical, however, to consider 
the impressive dose-dependent side-effect profile of 

these drugs, which is of particular concern in an already 
compromised population. These side effects include gas-
trointestinal and hematologic complications, increased 
susceptibility to infections, glucose intolerance, steroid 
myopathy, and behavioral changes. Among corticoste-
roids, dexamethasone has the most favorable side-effect 
profile and is often used as a first-line agent.31,32 

Up to 60% of malignant glioma patients experi-
ence seizures during their disease course.33 However, 
2 independent meta-analyses have shown that routine 
prophylaxis with an antiepileptic drug (AED) provides 
no benefit in brain tumor patients who do not have 
a history of seizures.34,35 Practice parameters from 
the American Academy of Neurology concur that 
AEDs should not be administered routinely to patients 
with GBM.34 Common AEDs, including phenytoin, 
carbamazepine, and benzodiazepines, are known to 
induce hepatic microsomal enzymes and have a pro-
found effect on the metabolism of steroids and chemo-
therapeutic agents.36 Accordingly, because of the lack 
of benefit for prophylaxis and the undesirable side- 
effect profile, treatment with AEDs is reserved for cases 
of documented seizure. Data suggest that second- 
generation AEDs such as levetiracetam may have great-
er utility in this unique population due to an improved 
pharmacodynamic and side-effect profile.37

Resection

Supported by the NCCN and confirmed by the GO 
Project, standard therapy for newly diagnosed GBM 

Figure 2. Progression of molecular pathophysiology in astrocy-
tomas. DCC = deleted in colorectal cancer (gene on chromosome 
18q21); EGFR = epidermal growth factor receptor; LOH = loss 
of heterozygosity; MDM2 = oncogene located on chromosome 
12q14•3-q15; PDGF(R) = platelet-derived growth factor (recep-
tor); PTEN = phosphate and tensin homology (tumor suppressor 
gene located at chromosome 10q23•3); RB = retinoblastoma gene 
and protein (RB1 gene maps to chromosome 13q14). (Adapted 
with permission from Kim L, Glantz M. Chemotherapeutic options 
for primary brain tumors. Curr Treat Options Oncol 2006;7:470.).

Table 2. Initial Presenting Signs and Symptoms in Patients 
with Malignant Glioma 

Sign/Symptom Frequency, %

Headache 56.0

Memory loss 35.5

Cognitive changes 34.4

Motor deficit 33.0

Language deficit 32.5

Seizure 31.9

Personality change 23.1

Visual problems 21.6

Other 17.4

Changes in consciousness 16.2

Nausea/vomiting 13.1

Sensory deficit 12.6

Papilledema 04.6

Adapted with permission from Chang SM, Parney IF, Huang W, et al.  
Patterns of care for adults with newly diagnosed malignant glioma. 
JAMA 2005;293:559. Copyright © 2005, American Medical Associ
ation.  All rights reserved.

Astrocytic cell precursor  
or neural stem cell

P53 mutation (> 65%)

PDGF-A, PDGFR-a (~ 60%)

EGFR amplification (~ 40%)

EGFR overexpression (~ 60%)

Low-grade astrocytoma  
(WHO II)

LOH 19q (~ 50%)

RB alteration (~ 25%)

Anaplastic astrocytoma  
(WHO III)

LOH 10q

PTEN mutation (5%)

DCC loss of expression (~ 50%)

Secondary glioblastoma  
(WHO IV)

Glioblastoma in younger adults

Primary glioblastoma  
(WHO IV)

Glioblastoma in older adults

RB alteration

LOH 10p and 10q

PTEN mutation (~ 30%)

MDM2 amplification (< 10%)

MDM2 overexpression (~ 50%)

P16 deletion (30%–40%)
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begins with an attempt at gross total resection.18,26 Re-
section serves to establish a pathologic diagnosis and 
to alleviate increased ICP and compression of adjacent 
cortex.8 Survival advantage has been confirmed in ret-
rospective studies for resection of 98% of tumor mass, 
although this projected benefit must be balanced with 
potential harm to adjacent eloquent cortex, which 
often limits the extent of resection.8 With thorough 
preoperative planning and the utilization of intraopera-
tive technologies such as neuronavigation and awake 
craniotomy with cortical mapping (see Neurosurgery), 
it is possible to minimize postoperative morbidity and 
increase the precision of tumor resection.38

External Beam Radiotherapy

Postoperative EBRT is standard of care for malig-
nant gliomas.18 This trend was pioneered in the 1960s 
by Bouchard and Pierce,39 who first reported survival 
benefit in GBM patients receiving radiation therapy. By 
the late 1970s, a randomized trial had shown that the 
human brain could safely tolerate a fractionated dose 
to 60 Gy, with improvement of median survival from 
14 to 36 weeks over supportive care alone.4 Subsequent 
attempts at increasing this total dose have failed to 
add survival benefit,40,41 and accordingly, standard 
recommendations for GBM have remained essentially 
unchanged.9 Most recently, a comprehensive review of 
radiation therapy for newly diagnosed malignant glio-
ma by Laperriere et al9 established that the preferred 
schedule is postoperative fractionated dose radio-
therapy of 60 Gy in 30 fractions focused in a field that 
encompasses the enhancing lesion plus a 2 cm margin. 
Moreover, there is no apparent benefit to whole brain 
radiotherapy, radiation dose intensification schedules, 
or radiation sensitizers.

Recent advances and future directions

The most alarming statistic uncovered by the GO Proj-
ect was that the median length of survival at diagnosis for 
GBM was 41 weeks,25 with a 32% 1-year survival rate, a 
rate which has remained unchanged since the 1980s.42 
This section reviews advances in each discipline involved 
in GBM management and discusses future prospects for 
changing this disheartening statistic.

Neurooncology

In the care of patients with GBM, neurooncologists 
take on the challenge of instituting chemotherapy tar-
geted at a malignancy that historically has shown only 
modest response to chemotherapy.43 Neurooncologists 
are also responsible for managing often life-threatening  
issues in supportive care, such as cerebral edema, anti-

epileptic prophylaxis, cancer fatigue, depression, and 
venous thromboembolism.31 Unfortunately, the GO 
Project uncovered mismanagement of these important 
issues,18 findings that likely reflect the inadequate sup-
ply of neurooncologists nationally. 

Systemic chemotherapy. Beginning in the 1970s, 
randomized trials were conducted to investigate chemo
therapy as treatment for malignant glioma in the 
adjuvant setting.43 The majority of studies focused on 
the lipid-based nitrosureas to facilitate crossing of the 
BBB.43 Subsequent meta-analysis confirmed a modest 
improvement in survival: an approximate 6% survival 
increase at 1 year and a 2-month increase in median 
survival time.43 Despite these suggestions of efficacy, the 
GO Project revealed that only 54% of eligible patients 
with malignant glioma are receiving chemotherapy.18 
Although reasons behind this trend are speculative, 
many patients and physicians alike may be unable to 
justify the morbidity associated with chemotherapy (eg, 
myelosuppression, pulmonary fibrosis, and fatigue) in 
light of the modest survival benefit.18 However, recent 
advances in the delineation of GBM pathogenesis have 
led to clinical trials of the chemotherapeutic agent tem
ozolomide, a drug that has shown great promise.44

To understand the motivation for selecting temo-
zolomide as a chemotherapeutic agent, it is important 
to understand the molecular genetics of GBM. The 
O6-methylguanine–DNA methyltransferase (MGMT) 

Table 3. Focal Presenting Signs of Malignant Glioma and 
Localization in the Central Nervous System

Location Clinical Findings

Brainstem Ataxia, cranial nerve palsies, motor deficits, nausea/
vomiting, sensory loss, vertigo 

Frontal lobe Gait disturbance, gaze preference, impaired judgment, 
motor deficits, personality change, seizure, urinary 
symptoms

Cerebellum Ataxia, headache, nuchal rigidity, nystagmus, occipital 
headache, vertigo

Occipital lobe Seizures with visual manifestations, visual field 
deficits

Parietal lobe Anosognosia (inability to acknowledge deficits), 
aphasia, apraxia, hemineglect, motor deficits,  
sensory loss 

Periventricular 
areas

Headache with postural change or Valsalva maneu-
ver, hypothalamic and autonomic dysfunction, 
nausea/vomiting, syncope

Temporal lobe Aphasia, memory disturbance, seizure, tinnitus,  
visual field deficits

Thalamus Cognitive impairment, motor deficits, sensory loss

Data from Wen and Black.19
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DNA-repair gene is found on chromosome 10q26 and 
codes for the DNA repair enzyme O6-alkylguanine–DNA 
alkyltransferase (AGT).45 MGMT is expressed in both 
normal and neoplastic cells, where it provides a protec-
tive effect through repair of DNA alkylation and preven-
tion of erroneous transcription.46 The mechanism of 
alkylating chemotherapeutics is to induce cell death by 
causing mismatched DNA base pairs which cannot be 
repaired.46 A high level of AGT activity in tumor cells 
creates a chemoresistant phenotype that is seen in high-
grade gliomas and consequently limits their response to 
nitrosurea-based chemotherapy.46,47 Likewise, a low level 
of AGT activity in glioma tissue is associated with longer 
survival in patients receiving chemotherapy.48

Temozolomide is an orally administered alkylating 
agent with 100% bioavailability49 that has the unique 
ability to deplete the DNA repair enzyme AGT.50 Based 
on preclinical data,51,52 it was theorized that temozolo-
mide and radiation therapy could act synergistically,53 
with temozolomide rendering tumor cells more radio-
sensitive.54 A phase II trial in 200247 established the safe-
ty and tolerability of postoperative concomitant temo-
zolomide and radiation therapy. Shortly thereafter, the 
first ever prospective phase III trial of chemotherapy in 
GBM was undertaken, with 573 GBM patients from 85 
treatment centers randomized to 2 postsurgical groups: 
radiation therapy alone (60 Gy) or radiation therapy 
(60 Gy) plus continuous temozolomide, followed by 
6 cycles of temozolomide alone.44 The study showed a 
significant difference in favor of the treatment group in 
both median survival (14.6 versus 12.1 mo) and 2-year  

survival rate (26.5% versus 10.5%).44 Furthermore, the  
study supported the minimal toxicity profile of com-
bined therapy44 and led to an US Food and Drug Ad-
ministration (FDA)–endorsed indication.55 Since pub-
lication in 2005,44 this combination therapy has been 
gaining widespread use in the management of newly 
diagnosed GBM.26

Previous studies have suggested that methylation of 
the promoter region of the MGMT gene and subsequent 
silencing leads to increased susceptibility to alkylating 
chemotherapeutics.48,56 To test this theory and look for 
evidence of survival benefit, pathologic analysis of 206 
available GBM specimens from the phase III trial of te-
mozolomide were undertaken.45 Among patients demon-
strating methylation of the MGMT promoter, there was a 
6.4-month median survival benefit with the combination 
therapy (21.7 versus 15.3 mo) but insignificant benefit in 
patients without a methylated promoter.45 The 2-year sur-
vival rate in patients with promoter methylation treated 
with combination therapy was 46% versus 13.8% in the 
unmethylated group.45 These results have significant im-
plications. If methylation status in patients is determined 
during pathologic analysis of surgical specimens, patients 
can be selected for suitability of adjuvant chemotherapy 
based on likelihood of response,45 avoiding unnecessary 
morbidity. The potential befefits of basing therapeutics 
on the unique pathophysiologic fingerprint of a patient’s 
malignancy has basic scientists and clinicians hopeful for 
the future of GBM chemotherapeutics.2,57

Therapies targeting aberrant signal transduction. With 
an increased understanding of molecular pathogenesis 

Figure 3. (A) Noncontrast axial computed tomography image of the head reveals an isodense ringed lesion associated with surrounding 
hypodense edema and hyperdense hemorrhage. (B) T2/FLAIR–weighted magnetic resonance image in the same patient displays a hetero-
geneous mass with surrounding hyperintense edema. (C) Ring enhancement on a T1–weighted magnetic resonance image with intrave-
nous contrast. FLAIR = fluid attenuation inversion recovery.

A B C



www.turner-white.com	 Hospital Physician  June 2008  15

G o l d l u s t  e t  a l  :  G l i o b l a s t o m a  M u l t i f o r m e  :  p p .  9 – 2 2 , 3 9

in malignant glioma, there has been a surge in the de-
velopment of targeted therapies, agents that focus on 
aberrant signal transduction.58 Signal transduction is the 
interaction between cell surface receptors and intracellu-
lar effector proteins, eventually leading to gene transcrip-
tion in the nucleus and control over cellular processes.59 
Although gliomas are genetically heterogeneous, they 
share common alterations in these pathways that lead 
to the malignant phenotype.59 Different therapeutic ap-
proaches have been evaluated, including the inhibition 
of growth factor ligands or their intracellular effector 
proteins.60 One approach that has elicited particular en-
thusiasm is the inhibition of growth factor receptors. Li-
gand binding to these often amplified,61 overexpressed,61 
or mutated62 receptors initiates intrinsic tyrosine kinase 
activity and pathway activation.59 The orally administered 
receptor tyrosine kinase inhibitors (RTKIs), which have 
proven utility in malignancies such as chronic myelog-
enous leukemia63 and lung cancer,64 compete with recep-
tor ATP-binding and subsequently inhibit activation.

The epidermal growth factor receptor (EGFR) is am-
plified in up to 50% of GBM cases,65 and among these 
nearly 40% express the mutant receptor EGFR vIII.62  
This receptor displays constitutive activation and has 
been shown to independently predict poor survival.66 
Accordingly, the EGFR-focused RTKI gefitinib (Iressa, 
ZD1839 [AstraZeneca, Wilmington, DE]) and erlotinib 
(Tarceva, OSI-774 [Genentech, San Francisco, CA]) 
are rational approaches to therapy.59 Unfortunately, 
clinical trials of these drugs in unselected malignant 
glioma patients have shown only modest effects on sur-
vival.67–72 However, it has been shown that radiographic 
response to these drugs can be predicted based on 
evaluation of biopsy tissue for the receptor and specific 
effector proteins.73,74 Coexpression of EGFR vIII and 
normal PTEN (phosphatase and tensin homolog)73 as 
well as overexpression of EGFR and low levels of PKB/
Akt (protein kinase B)68 have been shown to serve as 
predictors of drug response. In a similar fashion, ima-
tinib (Gleevec, STI-571 [Novartis, Basel, Switzerland]), 
an RTKI of the platelet-derived growth factor receptor 
(PDGFR), shows survival benefit as monotherapy only 
in malignant glioma patients selected for tumor ex-
pression of PDGFR.75,76

To date, the majority of single-targeted agents in 
monotherapy have been associated with poor clinical 
response in unselected malignant glioma patients.59 It 
is postulated that a reason for failure is the genetic het-
erogeneity typical of the disease and a lack of common 
reliance on a specific survival pathway among unique tu-
mors.77 As such, the future of targeted therapy may also 
lie in individualized tumor analysis with therapeutics 

tailored accordingly. Another consideration is the pres-
ence of compensatory pathways that are activated when 
another is blocked.77 To address this possibility, multi-
targeted RTKIs are under investigation as are combina-
tions of single-targeted RTKI to block multiple targets in 
the same pathway.59 Given the sophisticated pathogen-
esis in malignant gliomas, no “magic bullet” may ever be 
found. However, as basic science continues to identify 
novel pathogenic biomarkers and targeted therapeutics 
are refined, small gains will continue to be made.59 

Neuroradiology

A skilled neuroradiologist is instrumental in each 
phase of care of GBM patients, including diagnosis, 
perioperative assessment, and monitoring for recur-
rences. Although MRI is the standard modality in 
assessment of GBM, it has limitations.27,28 Recent ad-
vances in radiologic technology include perfusion MRI 
(pMRI) and magnetic resonance spectroscopic imag-
ing (1H MRSI), which give radiologists an increased 
ability to differentiate tumor from other confounding 
intracranial processes, monitor response to chemother-
apy, and distinguish tumor recurrence from radiation 
necrosis.78 Accordingly, the potential exists for more 
efficient treatment planning, optimization of therapy, 
and the avoidance of unnecessary morbidity. 

Perfusion MRI. Traditional MRI is limited by the rela-
tive nonspecific nature of contrast enhancement, which 
represents a disruption of the BBB.79,80 While active 
tumor enhances, so does the post-therapy tumor bed 
and areas of radiation necrosis.79 In the past, differen-
tiation between these processes in a noninvasive manner 
was difficult. Perfusion-sensitive, contrast-enhanced MRI 
is a novel technique that allows for assessment of tumor 
microvascularity by taking advantage of a characteristic 
that sets active tumor apart.79 pMRI is a calculation of 
relative cerebral blood volume (rCBV) in the area of 
interest relative to an analogous area in the contralateral 
cerebral hemisphere (Figure 4).78 The proangiogenic 
environment of active tumor results in a high rCBV, 
differentiating it from more ischemic processes such as 
necrosis, which can be indistinguishable clinically and 
radiographically.78,81 Thus, pMRI can prevent prema-
ture surgical intervention and unnecessary morbidity. 
In addition, in diagnosis of malignant glioma, it is es-
sential to sample tissue of the highest histopathologic 
grade, which generally also has the greatest vascularity 
and perfusion.82,83 pMRI allows for precise presurgical 
mapping before stereotactic biopsy, ensuring that sub-
sequent therapies are appropriate.82 Similarly, with the 
emergence of new options in chemotherapy targeted 
at antiangiogenic pathways, pMRI technology allows 
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for noninvasive monitoring of response.79 With prompt 
discontinuation of ineffective approaches and redirec-
tion, physicians can avoid morbidity and make the most 
of limited time. 

Magnetic resonance spectroscopic imaging. 1H MRSI 
is another relatively new modality available to neurora-
diologists that has emerged as an adjunct to traditional 
MRI.84 1H MRSI can detect biochemical compounds 
and quantify the metabolic processes in which they 
are involved, lending chemical specificity to the spatial 
localization of MRI.83 Through analysis of metabolite 
ratios, pathologic processes specific to GBM can be 
interpreted.84 Examples of common metabolites with 
utility in GBM are shown in Table 4.83 In practice, GBM 
is distinguished from normal parenchyma by decreased 
N-acetylaspartate (NAA) and creatinine; elevated cho-
line and lactate; increased ratios of choline/creatinine, 
choline/NAA, and lactate/choline; and a decreased 
ratio of NAA/creatinine.84 Further applications for 
1H MRSI include precision in biopsy site selection, 
monitoring response to therapy, and distinguishing 
tumor progression from radiation necrosis.78 Outside 
the realm of CNS malignancy, this technology also has 
utility in cerebrovascular disease, infection, and neuro-
degenerative processes.84 

pMRI85 and 1H MRSI86 are not yet considered rou-
tine in clinical management but offer a promising 
adjunct to anatomical imaging of malignant gliomas. 
Focused studies are anticipated to further elucidate 
the utility of these noninvasive technologies in diagno-
sis, treatment planning, and monitoring response to 
multimodality therapy.

Intra-arterial chemotherapy. Intra-arterial chemo-
therapy is an intervention in which a drug is directly 

delivered to the tumoral arterial supply under angio-
graphic guidance.87 This approach avoids metabolism 
of the drug before it reaches its target, allowing for 
a tenfold increase in tissue drug concentration as 
compared with intravenous administration.87 Despite 
theoretical promise, intraarterial chemotherapy has 
never reached widespread acceptance for treatment of 
malignant gliomas due to reports of significant vascular 
and neurologic toxicity, a labor-intensive protocol, and 
a paucity of supportive randomized clinical data.87,88 
However, a resurgence in popularity of the technique is 
underway with the important addition of osmotic BBB 
disruption. Though BBB is compromised in malignant 
gliomas, this disruption may be too inconsistent for re-
liable drug penetration, as regions of infiltrating tumor 
can rely on existing normal brain vasculature.89 To en-
hance tumor penetration, intra-arterial mannitol is ad-
ministered prior to chemotherapy to cause a transient 
interruption in the tight junctions that compose the 
BBB.90 In addition, drugs such as carboplatin are being 
utilized, which have a more favorable side-effect profile 
than nitrosureas when used for arterial infusion.87 A re-
cent phase II trial of intra-arterial chemotherapy with 
BBB disruption revealed a response rate of 58% in the 
subset of malignant astrocytoma patients.90 These re-
sults are encouraging, and we await a phase III trial for 
definitive results of this reinvented technology.

Neurosurgery

Neuronavigation and cortical mapping. Frameless ste-
reotaxy, or neuronavigation, has come into routine use 
in neurosurgical practice over the past 20 years.91,92 This 
technology allows the surgeon to view the position of his 
instrument in the surgical field on a computer screen 

Figure 4. (A) Post-contrast T1-weighted  
axial magnetic resonance image (MRI) of a 
patient who underwent resection of a right 
temporal glioblastoma multiforme tumor 
and adjuvant radiotherapy. (B) Perfusion-
sensitive, contrast-enhanced MRI displaying 
hyperperfusion and high relative cerebral 
blood volume at the margin of the resec-
tion cavity, which allow active tumor to be 
differentiated from radiation necrosis. 

A B
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relative to computed tomography or MRI images collect-
ed preoperatively, acting as a tool for localization in real 
time.92 Although variations in the protocol exist, typically 
skin markers, or “fiducials,” are applied to the scalp and 
established within preoperative imaging.92 In the operat-
ing suite, infrared input to a digitizer correlates the scalp 
markers with their corresponding match on the data set 
of acquired preoperative images.92 Through this process 
of point matching, the relationship between patient 
space and image space is established.93 Little prospective 
data exists, but subjective accounts by neurosurgeons re-
port use of neuronavigation in over 85% of GBM cases, 
and retrospective assessments suggest that neuronaviga-
tion improves the extent of resection and survival time.94 
However, the benefits must be balanced with sources 
of error such as “brainshift,” changes in anatomy that 
occur relative to preoperative imaging. Accordingly, 
utilization remains at the discretion of the surgeon until 
evolving technologies such as intraoperative MRI can 
further refine this technology.94

Another significant contribution to neurosurgical 
oncology over the past 2 decades is the technique of 
awake craniotomy with cortical mapping. This technol-
ogy allows for intraoperative functional assessment of 
peritumoral cortex involving motor or language areas 
that might otherwise be limited to biopsy.95 Accordingly, 
a more aggressive resection can occur while minimizing 
morbidity.96–98 Though variations in current protocol 
exist, the procedure is still based upon the ground-
breaking work of such prominent neurosurgeons as 
Berger,96 Ojemann,96 and Black.97 Commonly during 
scalp incision and craniotomy, the patient is maintained 
in a state of conscious sedation, able to maintain spon-
taneous ventilation and follow commands.99 Using ad-
equate local anesthetic to avoid discomfort, the dura is 
incised and then sedation is held.99 The patient is awake 
and cooperative to allow for functional assessment, and 
general anesthesia is reserved for emergency use only.99 
Tumor-infiltrated and potentially eloquent cortex is 
then subjected to electrical stimulation.99 With concom-
itant observation and assessment by a neurologist or 
speech pathologist, cortex is mapped as either eloquent 
or resectable.99 As resection continues into subcortical 
white matter regions, serial functional assessments are 
performed, and resection continues until complete or 
neurologic deficit appears.89 This technique has been 
shown in a number of studies to be well tolerated, and 
it allows for a substantial reduction of tumor burden in 
eloquent areas.95,99,100

Local chemotherapy systems. As we have seen, the 
trend in GBM therapeutics is toward use of tumor- 
specific agents. It is theorized, however, that system-

ic chemotherapy cannot cross the BBB in sufficient 
concentration to render a tumoricidal effect.101 To 
circumvent this phenomenon, the concept of local 
therapy to the postresection tumor bed is an attractive 
alternative.102 In terms of pathogenesis, GBM invades 
by migrating along myelinated white matter tracts and 
small blood vessels, seeding cells beyond the tumor 
mass accessible to the surgeon and preventing a clean 
margin postresection.102,103 Local chemotherapy can 
target micrometastases by taking advantage of the ex-
pression of tumor-specific proteins and rapid tumor 
cell turnover while minimizing toxicity to the post- 
mitotic normal brain.103–105 Local chemotherapy is also 
desirable because GBM rarely has systemic metastases, 
eliminating the necessity of systemic delivery with its 
associated toxicity.103

Gliadel (MGI Pharma, Bloomington, MN) repre-
sents an early attempt at local therapy. It is a system for 
the delivery of carmustine via biodegradable polymer 
wafer and is FDA approved for the treatment of newly 
diagnosed and recurrent malignant gliomas.106 Allow-
ing for controlled drug release over 2 to 3 weeks, up to 
8 wafers are placed at the time of surgery in the resec-
tion bed.107 Local carmustine therapy offsets the short 
half-life of the drug and increases the local concentra-
tion at the most likely site of recurrence while avoiding 
the toxicity of systemic delivery.103,108 Although in a 
phase III trial Gliadel in adjunct to conventional ther-
apy did not achieve statistical significance for median 
length of survival in GBM patients (13.5 versus 11.4 mo,  
P = 0.10),107 the trend indicates that local therapy may 
have a role in treatment. Pharmacokinetic studies have 
revealed that the Gliadel wafer has a penetration dis-
tance limited to several millimeters.109 Given that GBM 
is known to recur at a margin 2 cm from the resection 
cavity,110 it is possible that the modest gains seen in the 
Gliadel trial are not due to drug failure but rather the 
inability of the drug to reach its target in sufficient con-
centration. 

Table 4. 1H MRSI Metabolites with Utility in Glioblastoma 
Multiforme and Associated Biochemical Processes

Metabolite Process

Choline Marker of membrane synthesis and turnover

Creatinine Marker of cellular energy stores

Lactate Marker of anaerobic metabolism

N-acetylaspartate Neuron-specific marker directly related to 
normal neuronal function

1H MRSI = magnetic resonance spectroscopy imaging.

Data from Nelson and Cha.83
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Most chemotherapy agents are relatively large, on the 
order of 50,000 daltons or greater,111 limiting diffusion 
to 1 mm per day and leading to a small penetration dis-
tance and interstitial spread.111 In addition, intact BBB 
has intrinsic mechanisms to expel foreign chemicals 
from the CNS,112 leading to lower drug concentrations. 
To circumvent these limitations, convection-enhanced 
delivery (CED) has been investigated as a means to im-
prove upon drugs such as Gliadel. Postsurgically, a cath-
eter is implanted into the resection cavity under image 
guidance.111 With an infusion pump to drive flow, a 
continuous positive pressure injection is forced through 
the interstitial space, with subsequent dilatation of target 
tissues.111 As the drug permeates, therapeutic concentra-
tions are reached by bypassing the limitations imposed 
by the BBB and simple diffusion.111 CED is effective in 
a hypoxic environment in which malignant cells are 
radioresistant113 and provides high drug concentrations 
locally that may be toxic if administered systemically.114 
Accordingly, CED is an area of active research in the de-
livery of a wide range of CNS-active agents with applica-
bility to GBM, ranging from RTKI115 to targeted toxins116 
(discussed below).

As previously described, gliomas overexpress proteins 
not prevalent in normal brain, such as transferrin recep-
tor,117 vascular endothelial growth factor receptor,118 and 
receptor of interleukin (IL)-13,119 which can also serve 
as docking sites for tumoricidal agents, such as targeted 
toxins. Targeted toxins are recombinant polypeptides 
derived from bacteria such as Pseudomonas aeruginosa.120 
These potent peptide toxins are truncated to eliminate 
native toxicity and coupled to a tumor selective ligand, 
making them highly selective tumoricidal agents. Sev-
eral targeted toxins have recently advanced from the 
preclinical stages of development to clinical trial, and 2 
have recently completed phase III evaluation.121,122 

Cintredekin besudotox (IL13-PE38 [NeoPharm, 
Lake Forest, IL]) is a chimeric toxin of human IL-13 
fused to a mutated form of Pseudomonas exotoxin.120 Cap-
italizing on the limited expression of the IL-13 receptor 
in non-neoplastic cells and overexpression in malignant 
gliomas,119 early clinical trials in the setting of tumor 
recurrence offered promising results.123–126 CED-based 
therapy was well tolerated, with evidence of response on 
both neuroimaging and histologic samples. This early 
success prompted the recently completed PRECISE 
trial, a phase III randomized open-label study of CED- 
mediated delivery of IL13-PE38 versus Gliadel in the 
postresection setting of recurrent GBM.127 Similarly, 
TransMID (Tf-CRM107 [Xenova Group, Berkshire, UK])  
is a conjugate of human transferrin and a mutant form 
of diphtheria toxin.128,129 Transferrin receptor is a trans-

membrane glycoprotein that mediates the cellular up-
take of iron. Its expression is limited to the luminal sur-
face of brain capillaries in normal parenchyma,130 but it 
is overexpressed on hematopoietic and neoplastic cells 
such as GBM.117 Phase I and II trials proved the drug 
to be well tolerated with statistically significant tumor 
response in the setting of recurrence.128,131 In addition, 
a phase III trial comparing TransMID with conventional 
treatment for unresectable recurrent GBM has been 
completed.132 Unfortunately, these drugs failed to offer 
significant survival benefit beyond established therapies, 
likely secondary to variable expression of protein tar-
gets. However, while this application of CED was unsuc-
cessful, it represents only 1 of limitless applications of 
this safe and well-tolerated novel approach to CNS drug 
delivery. With the limitations of the BBB and systemic 
toxicity removed, novel targeted therapies as well as 
drugs resurrected from failed trials of systemic delivery 
will continue to build on this established foundation. 

Radiation Oncology

Early attempts at local control. Although studies 
have shown no utility for EBRT beyond 60 Gy,40,41 
data also indicates that length of survival in malignant 
glioma patients is directly related to radiation dose.40,133 
It is suggested that radiation dose is limited by toxicity 
to normal brain and ensuing clinical sequelae.134 Given 
that the majority of GBM tumors recur within 2 cm of 
the original tumor,116 radiation oncologists have also 
begun to pursue the idea of “local control” in an at-
tempt to minimize the exposure of normal brain and 
target micrometastases.135 Historically, the 2 modalities 
that have received the most attention are brachythera-
py and stereotactic radiosurgery. 

Brachytherapy involves a radiation source, common-
ly a “seed implant,” placed in direct contact with the 
tumor to emit a continuous dose of radiation.134 With 
decades of proven utility in breast136 and prostate137 
cancers, pursuit as an adjunct to therapy in malignant 
gliomas was intuitive and underwent intensive research 
beginning in the 1980s.138–143 Brachytherapy follows 
the standard course of gross total resection and EBRT 
in newly diagnosed disease138–140 or re-resection in the 
setting of recurrence141–143 and is accomplished by ste-
reotactic placement of radioactive seeds through burr 
holes in the cranium. Utilizing a radioactive isotope, 
typically iodine, seeds are placed along the axis of re-
sidual enhancing tumor. In theory, the continuous low-
dose irradiation preferentially damages proliferating 
tumor cells, which are less efficient than normal brain 
at repairing sublethal damage.135,144 Furthermore, given 
that hypoxic cells are radioresistant,144 postoperative 
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stereotactic implantation allows for the reintroduction 
of oxygen to the seed environment.135 Unfortunately, 
despite these theoretical advantages and promising 
data from phase II clinical trials,138–143 2 prospective 
randomized phase III trials of brachytherapy failed to 
show a survival advantage.145,146 Analyses revealed that 
the benefit seen in earlier trials was likely secondary 
to selection bias towards younger patients with higher 
performance scores and more accessible tumors that 
underwent more extensive resection.147 Furthermore, 
rates of reoperation from symptomatic radiation ne-
crosis were reported as high as 64%.146 Accordingly, 
the majority of support for the use of brachytherapy in 
malignant gliomas has passed.135

Stereotactic radiosurgery, a technique pioneered 
in the 1950s for use in trigeminal neuralgia,148 has 
come into use in the treatment of CNS diseases such 
as vascular malformations, malignancies, epilepsy, and 
movement disorders.149 This modality offers one-time 
precision delivery of focused high-dose radiation to the 
tumor, with the added advantages of a steep drop off of 
radiation dose outside of a precision target, leading to 
a favorable morbidity profile.135 It has received much 
attention over the past 20 years as a promising adjunct 
to GBM management, and early prospective stud-
ies from the 1990s showed encouraging results.150,151 
Unfortunately, in 2004 a phase III trial of postsurgical 
radiosurgery as a boost prior to conventional therapy 
failed to show survival advantage or improvement in 
quality of life, with 93% of patients displaying local 
recurrence.152 Again it has been suggested that ear-
lier nonrandomized studies demonstrating survival 
advantage were secondary to selection bias.153 Current 
recommendations by the American Society for Thera-
peutic Radiology and Oncology do not support the 
use of radiosurgery in the management of newly diag-
nosed malignant glioma, advising its use only as salvage 
therapy in recurrence.154 

GliaSite system. The GliaSite Radiation Therapy 
System (Proxima Therapeutics, Alpharetta, GA) is a 
novel device for the local delivery of radiation to the 
postresection tumor bed that offers several improve-
ments over older approaches.155,156 This FDA-approved 

expandable balloon catheter is placed in the surgical 
cavity at the time of resection.156 Acting as a spherical 
radiation source and designed to approximate the 
surgical cavity, it contains a subcutaneously accessible 
injection port brought through a cranial burr hole.156 
Within 1 to 3 weeks after placement, the apparatus is 
filled with liquid iodine to deliver a radiation dose up 
to 1 cm from the balloon surface over several days, 
after which the chemical is retrieved.155,156 GliaSite has 

several advantages over traditional brachytherapy.155,156 
From a procedural standpoint, it eliminates the need 
for a separate invasive procedure, and the radiation 
source can be efficiently added or removed outside of 
the operating room.156 From a therapeutic standpoint, 
the close approximation of the resection cavity deliv-
ers a homogeneous radiation dose to the most likely 
site of tumor recurrence, limiting exposure of healthy 
parenchyma, lessening the need for reoperation, and 
lowering associated morbidity.116,155,156

 To date, results have been promising. In a phase I 
trial, Tatter et al156 established the safety and feasibility of 
GliaSite in an open-label study of recurrent malignant 
glioma patients presenting for re-resection. The over-
all median survival postresection was 54.4 weeks and 
34.3 weeks in the subset of patients with GBM.156 In 
comparison, the median survival postresection in the 
control arm (re-resection alone) of a comparable pro-
spective trial of Gliadel wafer in recurrence was 23 weeks 
for grades III and IV and 20 weeks for GBM alone.157 
Although survival was not a primary endpoint in this 
phase I study, the results are certainly suggestive of sur-
vival benefit. Additionally, no patients required reopera-
tion for symptomatic radiation necrosis,157 suggesting an 
appropriately targeted homogeneous dose of radiation. 
A subsequent phase II trial confirmed this,133 and most 
recently, a 2006 retrospective multi-institutional analysis 
encompassing the work of 10 institutions in recurrence 
offered favorable results.158 With a median postresec-
tion survival of 43.6 weeks for grades III and IV and  
35.9 weeks for GBM,158 this comprehensive study further 
supported the use of GliaSite as a promising adjunct to 
current standards of care. Currently, we await a phase III 
trial for recurrence as well as further research into the 
potential use of GliaSite in initial management of GBM. 
For now, however, GliaSite offers the possibility of sur-
vival benefit with minimal risk in patients with recurrent 
disease and few promising options.

CONCLUSION

The many disciplines that encompass care of the 
GBM patient are making slow but steady progress to 
impact survival. As the delineation of the molecular 
pathophysiology of GBM continues, the current trend 
in multidisciplinary care will continue to ensure the 
prompt transition of this science to patient care. It is 
the hope of clinicians and researchers alike that GBM 
will follow the trend of other complex malignancies 
such as recurrent breast cancer, which has seen survival 
rates rise fourfold over the past 30 years.159 Through 
the continued pursuit of well-planned clinical trials 
and the coordination of care and research efforts in a 
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multidisciplinary fashion, the cure for this devastating 
disease may soon become a reality.	 HP

Test your knowledge and  
comprehension of this article with the 

Clinical Review Quiz on page 36.
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