Toxoplasma gondii is an obligatory intracellular pathogen that infects a large proportion of the world population and is a well-recognized cause of illness among persons with AIDS. T. gondii infection typically is latent and remains asymptomatic in both immunocompetent individuals and HIV-infected patients. However, patients with HIV are at risk for developing acute toxoplasmosis due to reactivation of the organism if their CD4+ T-cell count decreases below 100 cells/µL or if this level decreases below 200 cells/µL in the presence of concomitant opportunistic infection or malignancy. Reactivation of latent T. gondii infection in patients with AIDS typically manifests as cerebral toxoplasmosis, which can be life-threatening if not diagnosed and treated expeditiously. This article discusses the epidemiology, pathogenesis, diagnosis, and management of cerebral toxoplasmosis in adult patients with HIV infection.

EPIDEMIOLOGY

T. gondii infection has a worldwide distribution. In
the United States, 15% to 29.2% of the general population are seropositive for \textit{T. gondii} infection, while seroprevalence rates in Europe and tropical countries can reach 90%.\(^4\) In the United States, the prevalence of latent \textit{T. gondii} infection among persons with HIV infection does not differ from that in the general population.\(^5\) With the widespread use of highly active antiretroviral therapy (HAART), the incidence of central nervous system (CNS) toxoplasmosis has decreased.\(^6\) In particular, the incidence of toxoplasmic encephalitis decreased from 3.9 cases per 100 person-years in the pre-HAART era to 1 case per 100 person-years following the introduction of HAART.\(^7\) An estimated 10% to 20% of HIV-infected patients in the United States ultimately will develop toxoplasmic encephalitis.\(^8\) In 1 study, the risk for developing acute toxoplasmosis among HIV-infected adults was 18% in those who were compliant with prophylaxis versus 30% in those who were not compliant.\(^9\) In general, toxoplasmic encephalitis is a poor indicator of prognosis in AIDS patients, with 1 study attributing 23% of deaths in AIDS patients to this entity.\(^10\)

PATHOGENESIS

Toxoplasmosis is a zoonotic disease caused by the obligate intracellular protozoa \textit{T. gondii}. Infection in humans usually occurs via the oral or transplacental route. Consumption of raw or undercooked meat containing viable cysts, water contaminated with oocysts from cat feces, and unwashed vegetables are the primary routes of oral transmission; improper handling of undercooked meat or contaminated soil also may lead to hand-to-mouth infection.\(^11\) Transplacental infection with \textit{T. gondii} is more likely to occur in HIV-infected women who are acutely infected with \textit{T. gondii} during pregnancy compared with those with latent infection. In women with latent infection, there is an estimated 4% risk for transmission of the infection to the fetus.\(^12\) The rate of congenital infection in women with acute infection ranges from 20% to 50% depending on which trimester the acute infection occurs in.\(^13\) The outcome is more severe if the infection occurs early in the pregnancy, with first trimester infections causing spontaneous abortions or serious birth defects. Congenital toxoplasmosis is suggested by the classic triad of hydrocephalus, intracranial calcifications, and chorioretinitis, but the triad is not specific and is rare.\(^14\)
Humans are the intermediate hosts for *T. gondii*, whereas cats are the definitive hosts. Infected cats spread disease when oocytes pass in their feces. When ingested by humans, these oocytes become tachyzoites, which undergo rapid replication. These tachyzoites penetrate nucleated cells and form vacuoles. When these cells die, tachyzoites continue to spread throughout the body and infect other tissue as well as cause an inflammatory response. In the immunocompetent host, cell-mediated immunity controls the acute *Toxoplasma* infection as well as prevents disease reactivation. The presence of tachyzoites in the blood activates CD4+ T cells to express CD154 (also called CD40 ligand). In turn, CD154 triggers dendritic cells and macrophages to secrete interleukin (IL)-12, which activates T-cell production of interferon gamma (IFN-γ). IFN-γ stimulates macrophages and other nonphagocytic cells for an antitoxoplasmic response. Tumor necrosis factor-α (TNF-α) also has been shown to play an important role in controlling *T. gondii* by developing a strong T-cell response against this infection. In response, the tachyzoites transform into bradyzoites, which are morphologically similar to tachyzoites but replicate more slowly. The bradyzoites form cysts that are retained in the brain, heart, and skeletal muscle of the host for the rest of their life. The result is a chronic phase infection characterized by tissue cysts. If the host becomes immunocompromised, these cysts can transform back into tachyzoites to infect other tissues in the host.

In HIV-infected patients, expression of CD154 in response to *Toxoplasma* is impaired in CD4+ T cells. This impairment correlates with the decreased production of IL-12 and IFN-γ in response to *T. gondii* in HIV-infected patients. The cytotoxic T-lymphocyte activity is also impaired, thus decreasing the host defense against *T. gondii*. Decreased host defense leads to reactivation of chronic *Toxoplasma* infection in HIV-infected patients, especially when the CD4+ count decreases below 100 cells/µL.

Clinical Presentation

Typically, toxoplasmosis in HIV-infected patients occurs due to reactivation of chronic infection, and it usually presents as toxoplasmic encephalitis. In AIDS patients, *T. gondii* is the most common opportunistic infection that causes focal brain lesions. The initial presentation of toxoplasmic encephalitis in patients with AIDS may be subacute. Patients present with altered mental status (62%), headaches (59%), and fever (41%) associated with focal neurologic deficits. Progression of the infection can lead to confusion, drowsiness, seizures, hemiparesis, hemianopsia, aphasia, ataxia, and cranial nerve palsies. Motor weakness and speech disturbance are seen as the disease progresses. If not treated promptly, patients may progress to coma within days to weeks. Toxoplasmosis may rarely present as a rapidly fatal form of diffuse or global encephalitis with profound mental status changes, nausea, and vomiting, usually indicating elevated intracranial pressure.

The eyes and lungs are the most common sites of extracerebral manifestation of toxoplasmosis, and such manifestations may occur with or without concomitant encephalitis. Extracerebral manifestations occur less frequently than cerebral toxoplasmosis. *Toxoplasma* chorioretinitis (posterior uveitis) presents with eye pain and decreased visual acuity. It is indistinguishable from other ocular infections in HIV (especially cytomegalovirus retinitis) and rarely mimics acute retinal necrosis. *Toxoplasma* pneumonitis presents with fever, dyspnea, and nonproductive cough. Chest radiograph typically shows reticulonodular infiltrates. The clinical picture may be indistinguishable from *Pneumocystis jiroveci* pneumonitis. Other manifestations are rare, including involvement of the gastrointestinal tract, liver, musculoskeletal system, heart, bone marrow, bladder, and other extracerebral tissues.
spinal cord, and testes. Extracerebral toxoplasmosis is treated in the same manner as cerebral toxoplasmosis.

DIAGNOSTIC STUDIES

Serology assays, imaging, tissue biopsy, and polymerase chain reaction (PCR) assays are among the available modalities that can be used to diagnose toxoplasmosis. In patients with suspected toxoplasmosis, serology and imaging studies (either computed tomography [CT] or magnetic resonance imaging [MRI]) are typically used to make the diagnosis. Empiric therapy for cerebral toxoplasmosis should be considered for HIV-infected patients with ring-enhancing lesions on MRI or CT. Biopsy is reserved for uncertain diagnoses or for patients who fail empiric therapy. Other diagnostic modalities have a limited role.

Serology

Toxoplasma gondii infection is commonly detected by performing serologic studies for antitoxoplasma antibodies. The serum IgG antitoxoplasma titer peaks between 1 and 2 months after primary infection and typically remains detectable for the rest of the patient’s life. In general, serum assays should not be used as the sole diagnostic study for acute toxoplasmosis, as these studies alone cannot distinguish active from latent infection. However, in patients with known baseline antitoxoplasma IgG levels, an increase in the IgG level in the presence of clinical symptoms may indicate reactivation of *Toxoplasma* infection. A negative serologic test for IgG makes the diagnosis of acute toxoplasmosis less likely, and other causes of focal neurologic deficits should be included in the differential diagnosis. However, negative IgG serology does not definitively exclude acute toxoplasmosis, as patients with advanced HIV infection may become seronegative in such instances, checking the patient’s medical record (when available) may be helpful in determining their prior serostatus. False-negative results may occur in patients with recent infection or may occur due to insensitive assays. IgM antitoxoplasma antibody usually disappears within weeks to months after the primary infection but may remain elevated for more than 1 year. Therefore, elevated IgM levels do not always suggest recent infection. Because antitoxoplasma IgM antibodies typically are absent in patients with reactivated disease and toxoplasmic encephalitis in HIV-infected patients is most often due to reactivated disease, the IgM antibody test is generally not useful in the workup for cerebral toxoplasmosis. However, determining whether infection is recent is important in pregnant patients due to concerns for transplacental infection. In a pregnant woman with HIV infection, the interpretation of IgM serology becomes particularly challenging if it is unknown whether the woman was seropositive for *T. gondii* prior to pregnancy. In this case, serologic testing should be repeated 3 weeks after initial serologic testing is performed. Positive and rising IgM levels can be interpreted as acute infection, recent infection, or a false-positive test result; however, positive IgM in the fetal blood is indicative of congenital infection.

Imaging Studies

Contrast-enhanced MRI or CT of the brain is indicated when cerebral toxoplasmosis is suspected in HIV-infected patients. Imaging studies usually show multiple lesions located in the region of the cerebral cortex, corticomedullary junction, or basal ganglia, although a single lesion may sometimes be present. The characteristic sign of cerebral toxoplasmosis is the asymmetric target sign, which represents a ring-enhancing abscess seen with both CT and MRI. A noncontrast CT scan may reveal a hypodense lesion in the brain that can be mistaken for other types of focal brain lesions; however, a repeat CT scan with contrast will demonstrate the typical ring-enhancing sign. On T1-weighted MRI, toxoplasmic lesions are typically hypointense in relation to the rest of the brain tissue. On T2-weighted MRI, the lesions are usually hyperintense. As seen with CT with contrast, gadolinium-enhanced MRI usually demonstrates a ring-enhancing lesion with surrounding edema. MRI is the modality of choice for diagnosing and monitoring the response to treatment of toxoplasmosis because it more sensitive than CT for detecting multiple lesions. However, differentiating cerebral toxoplasmosis from CNS lymphoma can be difficult in the presence of surrounding edema and mass effect. In such cases, it is recommended that patients be treated for toxoplasmosis.

Single photon emission computed tomography (SPECT) is an important tool for differentiating CNS lymphoma from toxoplasmic encephalitis. However, it is available only in specialized centers. Neuroimaging with thallium SPECT shows increased uptake in AIDS patients with CNS lymphoma. In addition, SPECT has a sensitivity and specificity of 86% to 100% and 76% to 100%, respectively, for the diagnosis of CNS lymphoma.

Cerebrospinal Fluid Analysis

Cerebrospinal fluid (CSF) analysis is rarely useful in the diagnosis of cerebral toxoplasmosis and is not performed routinely given the risk of increasing intracranial pressure with lumbar puncture. The case
patient did not undergo lumbar puncture due to the presence of bilateral papilledema and the CT findings of bitemporoparietal lesions, which suggested a space-occupying lesion and increased intracranial pressure. However, this procedure may be performed if the diagnosis of toxoplasmosis is not clear in a patient with altered mental status or features of meningitis. CSF findings may include elevated protein, variable glucose levels, and mildly elevated white blood cell counts with a mononuclear predominance. Identification of *T. gondii* nucleic acid using PCR may be helpful in establishing the diagnosis of toxoplasmic encephalitis, but this is not done routinely.44

Pathologic Evaluation

Pathologic examination of a brain biopsy specimen provides the definitive diagnosis of toxoplasmic encephalitis. Findings of tachyzoites or cysts surrounded by areas of inflammation are considered diagnostic. Reactivation can lead to brain abscesses with central avascular area. The surrounding brain tissue will show edema and inflammatory infiltrates by lymphocytes with perivascular cuffing. *Toxoplasma* cysts may appear as inflammatory solid or cystic granulomas secondary to glial mesenchymal reaction to necrotizing encephalitis, resulting in focal vasculitis.22,43 The areas of CNS more frequently involved in toxoplasmosis are the brain stem, basal ganglia, pituitary gland, and corticomedullary junction.45 Brain biopsy is not routinely used in the diagnosis of cerebral toxoplasmosis because noninvasive methods such as serology and imaging techniques can be used for making a presumptive diagnosis. Brain biopsy is very sensitive for diagnosing cerebral lesions but carries a significant risk of bleeding, damage to the surrounding tissue, and infection.28 Biopsy is recommended when the diagnosis is doubtful or if the patient either does not respond to or worsens with empirical treatment.36

DIFFERENTIAL DIAGNOSIS

The differential diagnosis in HIV-positive patients who have multiple ring-enhancing lesions on CT or MRI is listed in Table 1.47 The leading causes of CNS abnormality in patients with advanced HIV infection (<50 cells/μL) include toxoplasmic encephalitis (19% of all brain lesions in AIDS patients),48 primary CNS lymphoma (4%–7% of all brain lesions in AIDS patients),47 progressive multifocal leukoencephalopathy, HIV encephalopathy, and cytomegalovirus encephalitis.49 Other infectious etiologies to consider in patients with advanced HIV infection who have CNS abnormality include tuberculosis, *Staphylococcus, Streptococcus, Salmonella, Listeria, Nocardia, Rhodococcus, cryptococcosis, histoplasmosis, candidiasis, coccidioidomycosis, aspergillosis, trypanosomiasis, herpetic meningoencephalitis, neurocysticercosis, meningovascular syphilis, and amebic abscesses.*49

| **Table 1. Differential Diagnosis for Ring-Enhancing Lesions in HIV-Infected Patients** |
|-----------------------------------|---------------------------------|-----------------|-----------------|
| Acute toxoplasmosis | Primary central nervous system lymphoma |
| Primary brain tumors (rarely glioblastoma) |
| Brain metastasis | Demyelinating diseases (eg, multiple sclerosis, vasculitis) |
| Infections (eg, brain abscess, tuberculosis) |
| Multifocal infarcts | Inherited lesions (eg, hemangioblastoma associated with von Hippel-Lindau disease) |
| Arteriovenous malformation | |

TREATMENT

First-line therapy for acute toxoplasmosis in HIV-infected patients is pyrimethamine and sulfadiazine (Table 2). As this combination leads to the sequential inhibition of enzymes in the folic acid synthesis pathway, leucovorin must be added to avoid hematologic complications. Treatment for pregnant women infected with *T. gondii* is the same as for nonpregnant adults, but the mother should be made aware that sulfadiazine can cause hyperbilirubinemia and kernicterus in the baby.34 There are alternative treatment regimens for patients who cannot tolerate sulfadiazine or pyrimethamine (Table 2). Skin rashes, a common adverse effect of sulfadiazine leading to discontinuation of therapy, can be palliated by simultaneously starting antihistamines.34 Sulfadiazine also may cause crystal-induced nephropathy. In critically ill patients who are unable to take medication orally, intravenous trimethoprim (TMP) 10 mg/kg daily plus sulfamethoxazole (SMX) 50 mg/kg daily can be considered.50,53

Acute infections should be treated for a minimum of 3 weeks, but 6 weeks of therapy is preferred in patients who can tolerate it. Longer duration should be considered for patients who have persistent radiologic or clinical evidence of infection.34 Approximately 65% to 90% of patients respond to treatment with pyrimethamine, leucovorin, and sulfadiazine.51,52 Rapid clinical improvement should be seen after starting appropriate therapy for acute toxoplasmosis. By day 3, 51% of patients show neurologic improvement, with 91% of patients demonstrating neurologic improvement by day 14.26
improvement is seen by the third week of therapy. In patients not responding to treatment within 10 to 14 days or showing clinical deterioration by day 3, biopsy should be considered to rule out lymphoma.

There are no clear-cut guidelines as to when antiretroviral medications should be started or restarted in an HIV-infected patient with acute toxoplasmosis. The common consensus is that antiretroviral medication can be restarted at the physician’s discretion once acute toxoplasmosis has been treated and after discussion with the patient.

Corticosteroid therapy should be considered in patients whose clinical condition deteriorates within the first 48 hours of treatment or who have radiologic evidence of midline shift or signs of increased intracranial pressure. Dexamethasone (4 mg every 6 hr) is the most commonly administered agent, and it is tapered over the next few days. Steroids should be used carefully in patients with HIV infection, as these drugs may mask other opportunistic infections. Anticonvulsants should be started for patients with seizures but are not recommended for routine use.

PROPHYLAXIS

Nonpharmacologic Measures

Screening for antitoxoplasma IgG antibodies should be performed once a patient is diagnosed with HIV in order to assess his or her risk for developing acute toxoplasmosis. Seronegative patients should be rescreened for *T. gondii* infection when their CD4+ levels decrease below 100 cells/µL to determine if they have seroconverted. All patients with HIV infection should be instructed about proper food handling and preparation to avoid infection with *T. gondii* regardless of serostatus. Specifically, patients should be told to wash hands after touching uncooked or undercooked meat as well to wash vegetables and fruits before consumption and to avoid eating only properly cooked meat. In addition, patients should avoid contact with any material that could be contaminated with cat feces and use gloves when cleaning cat litter boxes or when gardening. However, HIV-infected persons do not need to avoid contact with household cats entirely. Finally, all patients diagnosed with HIV should be educated about primary and secondary medical prophylaxis for *T. gondii* infection.

Primary and Secondary Pharmacologic Prevention

In seropositive patients, primary prophylaxis is recommended for HIV patients with a CD4+ count below 100 cells/µL and in those with a CD4+ count below 200 cells/µL who have opportunistic infections or concurrent malignancy. Prophylaxis against *T. gondii* with TMP-SMX in patients with CD4+ counts less than 100 cells/µL has been shown to reduce the risk for toxoplasmosis by 73%. TMP-SMX is the preferred agent for primary prophylaxis, but there are alternate regimens for patients who cannot tolerate standard prophylaxis (Table 3).

HIV-infected patients who do not receive maintenance therapy after treatment of acute toxoplasmosis have a 50% to 80% relapse rate of toxoplasmic encephalitis. Patients should receive secondary prophylaxis following 6 weeks of therapy for acute infection. Alternate combination regimens should be considered.

Table 2. Treatment Regimens for Acute Toxoplasmosis in Adult HIV Patients

<table>
<thead>
<tr>
<th>Preferred Therapy and Duration</th>
<th>Alternative Regimens</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pyrimethamine (200 mg oral loading dose, followed by 50–75 mg/day orally), sulfadiazine (1000–1500 mg 4 times daily), and leucovorin (10–20 mg/day) for up to 6 weeks</td>
<td>Pyrimethamine (200 mg oral loading dose, followed by 50–75 mg/day orally) and clindamycin (600 mg intravenously [IV] or orally 4 times daily)</td>
</tr>
<tr>
<td></td>
<td>TMP (5 mg/kg) and SMX (25 mg/kg) IV or orally twice daily</td>
</tr>
<tr>
<td></td>
<td>Atovaquone* (1500 mg orally twice daily) plus pyrimethamine (50–75 mg/day) and leucovorin (10–20 mg/day)</td>
</tr>
<tr>
<td></td>
<td>Atovaquone* (1500 mg orally twice daily) plus sulfadiazine (1000–1500 mg 4 times daily)</td>
</tr>
<tr>
<td></td>
<td>Atovaquone* (1500 mg orally twice daily)</td>
</tr>
<tr>
<td></td>
<td>Pyrimethamine (50–75 mg/day) and leucovorin (10–20 mg/day) plus azithromycin (900–1200 mg/day orally)</td>
</tr>
<tr>
<td>For severely ill patients who cannot tolerate oral medications, TMP (10 mg/kg/day) and SMX (50 mg/kg/day) IV.</td>
<td></td>
</tr>
</tbody>
</table>

*Atovaquone should be taken with meals or nutritional support.

- TMP = trimethoprim; SMX = sulfamethoxazole.
for patients who cannot tolerate sulfadiazine or pyrimethamine (Table 3). Atovaquone as monotherapy can be considered for patients who cannot tolerate pyrimethamine, but the relapse rate is 26% during the first year of treatment.62

Immune Reconstitution

If the patient’s CD4+ count increases to more than 200 cells/µL for 3 consecutive months, primary prophylaxis for both *P. jiroveci* pneumonia and toxoplasmosis can be safely discontinued.63 According to current guidelines, secondary prophylaxis can be discontinued if the CD4+ counts increases to greater than 200 cells/µL and is sustained for more than 6 months.64 Primary or secondary prophylaxis should be reinitiated if the CD4+ count declines below 200 cells/µL.64

CONCLUSION

Acute cerebral toxoplasmosis is the most common cause of focal neurologic disorder in AIDS patients. If not detected and treated promptly, cerebral toxoplasmosis may cause significant morbidity and mortality. Prophylaxis is key to preventing negative outcomes. All HIV-infected patients should be educated about nonpharmacologic and medical prophylaxis for *T. gondii* infection, and seropositive patients should receive either primary or secondary prophylaxis for toxoplasmosis. **HP**

REFERENCES

Copyright 2008 by Turner White Communications Inc., Wayne, PA. All rights reserved.