Osteonecrosis of the femoral head (ONFH) is a potentially debilitating condition of unclear etiology that affects up to 20,000 persons in the United States each year. ONFH in adults can be devastating as it typically occurs in a relatively young population (age, 35–40 yr). The disease is usually progressive, and without treatment, ONFH frequently results in loss of the joint space, secondary osteoarthritis, and destruction of the hip joint. ONFH accounts for approximately 10% of the primary total hip arthroplasties performed in the United States.

The pathogenesis of ONFH remains unclear, but this disorder is considered a final common pathway for many diseases that lead to altered blood supply to the femoral head and cell death within the femoral head. Histologically, ONFH is characterized by dead osteocytes, necrotic marrow elements, and lack of vasculature in a defined region in the femoral head; in most cases, these changes lead to subsequent collapse of the subchondral bone. ONFH commonly occurs after direct trauma, such as hip dislocation or femoral neck fracture. The etiology of atraumatic ONFH is not well understood, and often one or more risk factors are involved, such as corticosteroid use and alcoholism.

Multiple therapeutic options are available for ONFH. Although surgical and nonsurgical interventions have been advocated, a universal algorithm has yet to be adopted in ONFH treatment. Both the appropriate course of treatment and its degree of success are thought to be dictated by the etiology and severity of the disease. Most experts believe that early diagnosis is vital if the patient is to benefit from conservative treatment. Given the importance of early diagnosis and prompt management, clinicians should know the causes, risk factors, clinical presentation, and diagnostic work-up of ONFH in adults and be familiar with currently accepted treatment.

**ETIOLOGY**

Many direct and associated factors can predispose a person to ONFH (Table 1). Established traumatic etiologies include hip dislocation and femoral neck fracture, although ONFH does not occur in all cases of these injuries. Direct nontraumatic causes include radiation and dysbaric osteonecrosis (caisson disease).

**TAKE HOME POINTS**

- The etiology of osteonecrosis of the femoral hip (ONFH) includes traumatic (eg, hip dislocation) and nontraumatic causes (eg, radiation osteonecrosis). Common associated risk factors for ONFH include alcoholism and high-dose steroid therapy.
- Young patients presenting with atraumatic groin pain and 1 or more risk factors should be considered for the onset of ONFH.
- Anteroposterior and frog-leg lateral radiographs should be obtained as part of the work-up; however, early-stage ONFH is not visible on radiographs.
- Magnetic resonance imaging should be performed when ONFH is suspected but not obvious on radiographs.
- Nonsurgical management is often used for small, asymptomatic lesions in which subchondral bone collapse is absent.
- Surgical interventions attempt to preserve the femoral head (early stage) or replace the proximal femur or hip joint (late stage).

The most common nontraumatic associated risk factors are alcoholism and high-dose corticosteroid therapy (> 2 g of prednisone or its equivalent in 2–3 mo). Steroid dose packs typically contain less than 100 mg of prednisone given over a 7-day period and therefore should not increase the risk of ONFH. However, if high-dose steroids are prescribed, the patient’s bone health should be carefully monitored with clinical examinations to evaluate for joint pain and loss of motion. Less commonly diagnosed nontraumatic risk factors include coagulation disorders, genetic polymorphisms (variations in the human genome), and many chronic diseases. The
The exact relationship between these associated diagnoses and the development of ONFH is not completely understood. However, most of these conditions are associated with negative changes in microcirculation to the femoral head, suggesting that lack of blood supply may be an initiating mechanism in the pathologic process. Approximately 20% of ONFH cases appear to be idiopathic in origin with no associated risk factors.

**Table 1. Risk Factors Associated with Osteonecrosis of the Femoral Head in Adults**

<table>
<thead>
<tr>
<th>Direct</th>
<th>Nontraumatic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Traumatic</td>
<td>Radiation</td>
</tr>
<tr>
<td>Hip dislocation</td>
<td>Dysbaric phenomena/decompression sickness (caisson disease)</td>
</tr>
<tr>
<td>Femoral neck fracture</td>
<td>Sickel cell crisis</td>
</tr>
<tr>
<td>Surgical exposure of the femoral neck</td>
<td></td>
</tr>
</tbody>
</table>

**Associated factors**

- Alcoholism
- Smoking
- Hypercortisolism
- Coagulation disorders
  - Hemophilia
  - Thrombophilia
  - Hypofibrinolysis
- Genetic polymorphisms
- Chronic diseases
  - HIV infection
  - Storage diseases (Gaucher disease)
  - Hemoglobinopathies/thalassemia
  - Chronic kidney disease
  - Cushing's disease
  - Pancreatitis
  - Gout/hyperuricemia
  - Systemic lupus erythematosus
  - Polyarteritis
  - Hyperlipidemia/hyperlipoproteinemia
  - Hyperparathyroiditis
  - Diabetes mellitus
  - Endotoxin reactions
  - Serum sickness
  - Toxic shock
  - Inflammatory bowel disease
  - Chemotherapy
  - Nephrotic syndrome

Data from references 1, 9–11.

**Diagnosis**

**Initial Evaluation**

The diagnosis of ONFH is frequently overlooked because the symptoms are often nonspecific and because the early stages of ONFH are not visible on radiographs. A focused history and thorough physical examination along with the judicious use of magnetic resonance imaging (MRI), however, can help identify the initial onset of ONFH. Young patients presenting with atraumatic groin pain and a history of 1 or more of the aforementioned risk factors should be considered carefully for the onset of ONFH. The pain is generally described as a throbbing, deep pain that develops gradually; however, more advanced stages of ONFH may be associated with a sharp catching pain. As is the case with other hip pathology, patients also may describe pain radiating to the buttocks or to the ipsilateral knee. Stiffness, limping, and need of support to climb stairs are common. Patients may report difficulty putting on shoes and socks because of hip irritability and stiffness. Examination should include observation of the gait, palpation of the soft tissues and bony prominences of the hip and pelvis, range of motion assessment of the hip and lumbar spine, and neurovascular testing. The Stinchfield test for hip irritability is also useful. Because ONFH may be found bilaterally in up to 80% of patients, both hips should be carefully examined.

**Imaging Studies**

Standard anteroposterior and frog-leg (Lowenstein) lateral radiographs should be obtained as part of a patient’s work-up. A pelvis radiograph is best as it determines if the condition is bilateral and also provides a comparison for the affected hip. It may be difficult to delineate small areas of ONFH on plain radiographs, but the most common early findings are alternating areas of sclerosis and lucency (Figure 1). The presence of the crescent sign (Figure 2) corresponds with late-stage disease; this finding reflects the discrepancy in densities of the femoral head due to subchondral bone collapse. It should be noted that radiographs might underestimate the degree of articular cartilage damage, especially on the acetabular side.

When ONFH is suspected but not obvious on plain radiographs, MRI should be performed. A typical finding is a crescentic signal change with a well-defined distinct border (Figure 3). A distinct low-signal line on T1-weighted images outlines the necrotic lesion. Bone edema (Figure 4), which has a more diffuse low signal, surrounds
Edema has a diffuse high signal in T2 images and may extend into the femoral head and neck (Figure 4). MRI also should be considered when evaluating the contralateral hip of patients with known ONFH on one side. The excellent sensitivity and specificity of MRI (99% and 98%, respectively) have made most other diagnostic methods redundant. The use of technetium bone scans and computed tomography scans for ONFH evaluation has been described. However, these studies are currently utilized only when MRI is contraindicated (eg, in patients with indwelling metallic hardware that would obscure the MRI signal or those with a pacemaker) as they are otherwise thought to be less reliable than MRI and are no less expensive than the limited MRI sequence studies that are used specifically for ONFH.

Hip arthroscopy allows the surgeon to evaluate any articular damage, but it is an invasive procedure.

Two diagnoses often mistaken for ONFH include transient osteoporosis of the hip (TOH) and hip osteoarthritis. TOH is a rare self-limited disorder commonly seen in pregnant women and patients with osteogenesis imperfecta that may have some similarities in appearance to ONFH on MRI. A major difference between these conditions on MRI is that in ONFH the changes are usually limited to a specific area of the femoral head, whereas these conditions may involve the entire femoral head.

Figure 1. Frog-leg lateral radiograph of the femoral head in a 46-year-old man with Steinberg stage III osteonecrosis. Note the crescent sign (arrows), a hallmark of osteonecrosis caused by the discrepancy in densities of the femoral head due to subchondral bone collapse.

Figure 2. Radiographic sclerosis shown on anteroposterior radiograph of a 46-year-old man. Note the central rarefaction and maintenance of femoral head sphericity (Steinberg stage II).

Figure 3. T1 magnetic resonance imaging sequence showing a crescentic signal change with a well-defined distinct border (right hip, left side of the figure) and a normal contralateral femoral head (left hip, right side of the figure).
It is also common for patients with hip osteoarthritis to be incorrectly diagnosed with ONFH when an MRI is interpreted without other information. Cystic changes in the femoral head and related bone edema can be misinterpreted as ONFH, although radiographs and history easily distinguish between these 2 diagnoses. Radiographs in osteoarthritis demonstrate osteophytes and joint space narrowing without collapse of the femoral head; these findings are unusual in most stages of ONFH.

**CLASSIFICATION**

A number of classification systems for ONFH have been developed, including the Ficat and Arlet, ARCO (Association Research Circulation Osseous), and Stulberg, but the Steinberg classification (Table 2) is considered most useful because it grades the severity and extent of the involvement, both of which are thought to affect prognosis. Severity focuses on the congruity of the joint surface, and the extent of disease reflects the volume of the femoral head involved. Some surgeons also consider patient age and/or the presence of symptoms to be of importance in ONFH classification. Although various algorithms for osteonecrosis have been based on the staging of the lesion, each of the many staging systems available has limitations and there is no universally accepted system.

**TREATMENT**

**Conservative Therapy**

Current ONFH treatment recommendations are controversial. Most contemporary algorithms are based on the stage of the disease, with the patient’s symptoms...
having a varying degree of importance.\textsuperscript{1,8,12,23} Both nonsurgical and surgical treatment options have been used with differing levels of success.\textsuperscript{1,3,8,10,24–30} Nonsurgical treatment is often advocated for small, asymptomatic precollapse lesions\textsuperscript{12} or for patients who cannot tolerate a surgical procedure. Newer nonoperative treatment modalities (eg, bisphosphonates, statins, anticoagulants) for early-stage disease have been reviewed recently,\textsuperscript{12} but exact indications have not yet been established. In a recent level 1 study, bisphosphonates were shown to be effective for treating Steinberg stage II and IIIC disease;\textsuperscript{25} this study requires further confirmation. In a recent survey, physician members of the American Association of Hip and Knee Surgeons reported that they rarely offered statins (3\% of those surveyed), anticoagulants (6\%), or bisphosphonates (10\%) to treat or prevent ONFH.\textsuperscript{23} Other nonoperative approaches recently described include biophysical stimulation with pulsed electromagnetic fields\textsuperscript{31} and extracorporeal shock wave treatment.\textsuperscript{32}

Bisphosphonates deserve mention because there have been reports of osteonecrosis of the jaw (ONJ) associated with their use. Most reported cases of bisphosphonate-related ONJ have been in cancer patients treated with intravenous bisphosphonates, but cases have occurred in patients with other diagnoses.\textsuperscript{33} The development of ONFH has not been reported in association with bisphosphonate use; in fact, ONFH has been successfully treated with bisphosphonates given over a 2-year period.\textsuperscript{25} Clearly, further research is needed to clarify this paradox.

**Surgical Interventions**

Surgical interventions for ONFH either attempt to preserve the femoral head (in early-stage disease) or replace the proximal femur or hip joint (in late-stage disease). Temporizing techniques are used for intermediate disease. Core decompression aims to decrease the intraosseous pressure and possibly enhance vascular ingrowth, thereby delaying or negating the need for total hip arthroplasty. This technique utilizes a tunnel or multiple small holes that are drilled through the proximal femur into the necrotic lesion (Figure 5). Core decompression has had mixed results,\textsuperscript{11,34} but in a meta-analysis study, Castro and Barrack\textsuperscript{10} showed that its success rate was significantly higher than that of nonsurgical management of early-stage disease (Figure 6). Surgeons surveyed\textsuperscript{23} commonly chose core decompression for symptomatic Steinberg stage IB and IIB disease (prior to crescent sign visibility). Some surgeons also offer this approach for asymptomatic early-stage disease when lesions are of moderate or large size.\textsuperscript{8,25}

Bone grafting can be used in conjunction with core decompression or as a treatment option alone. Both vascularized\textsuperscript{29,35–37} and nonvascularized\textsuperscript{35,37} fibula grafts have been employed, but of the 2 procedures vascularized grafts are used more frequently.\textsuperscript{23} Encouraging results have been obtained in select patient groups,\textsuperscript{36} and surgeons offer this procedure to younger patients with earlier-stage disease. Vascularized bone grafting is a resource-intensive procedure and is performed at relatively few centers in the United States. There is a significant complication rate, and donor site morbidity is common.
Osteotomies (designed to shift the weight-bearing load to a more normal portion of the affected femoral head) and hip arthrodesis (fusion) are less commonly offered by hip surgeons in the United States but may be useful in very specific patient populations (eg, teenagers or very young laborers with late-stage disease and significant symptoms). These procedures are offered more commonly in later-stage disease than decompression or bone grafting.

Total hip arthroplasty remains the treatment of choice among hip and knee surgeons for Steinberg stage IIIB and more advanced ONFH when pain, stiffness, and disability cannot be controlled by nonsurgical means (Figure 7). Traditional and resurfacing hemiarthroplasty (replacing only the femoral portion of the joint) and resurfacing total hip replacement (replacing the surface of the femoral head in conjunction with the acetabulum) are not offered as frequently and appear to be less reliable as compared with traditional total hip arthroplasty.

Recently, however, there has been enthusiasm among some investigators who anticipate better results from resurfacing due to improvements in techniques and biomaterials. Unfortunately, studies with long-term follow-up have shown less positive outcomes of total hip arthroplasty in patients with ONFH as compared with osteoarthritis patients. Surgical treatment options continue to evolve, and biomaterials and techniques that have been developed over the past 5 to 10 years will hopefully improve results and thus make total hip arthroplasty in patients with advanced ONFH more acceptable, even for younger patients.

**SUMMARY**

Adult ONFH is a potentially devastating and commonly progressive illness affecting patients in the prime of their life. Direct and associated risk factors should be considered when evaluating a patient with possible ONFH. Patients suspected of having ONFH...
should be given a thorough physical examination, supported by anteroposterior and lateral hip radiographs. MRI evaluation with focused coronal images of both hips should be obtained unless bilateral disease is already evident or the etiology is unilateral trauma. Regular and prolonged follow-up is necessary for patients with associated risk factors or direct trauma to the femoral neck. Treatment of adult hip ONFH is usually based on the stage of the disease. Nonsurgical treatments are being developed, but exact indications are not yet clear. For those with moderate or large sized lesions without subchondral collapse, core decompression is commonly utilized. Once a crescent sign is observed on radiographs (Steinberg stage III), hip arthroplasty is the most commonly offered treatment modality. Surgical options such as vascularized and nonvascularized bone grafting, osteotomy, and fusion may be indicated for certain patients. Techniques and devices for performing total hip arthroplasty continue to improve, and as a result, surgeons are considerably less reluctant to recommend this for young patients whose osteonecrosis has progressed to the point that some type of arthroplasty is required. Treatment algorithms for ONFH continue to evolve, and evidence-based medicine will enhance our understanding of how best to address different stages of this disease.

Test your knowledge and comprehension of this article with the Clinical Review Quiz on page 55.

REFERENCES

35. Kim SY, Kim YG, Kim PT, et al. Vascularized compared with nonvascularized (continued on page 56)

Copyright 2008 by Turner White Communications Inc., Wayne, PA. All rights reserved.