A number of years ago, I was a junior resident working in the ED of a large academic medical center. My attending was a venerable senior physician on the medical staff. It was a relatively quiet evening until we received a radio call from a paramedic unit that was bringing in a 98-year-old man in full cardiac arrest.

Upon arrival, the patient had already been intubated by the paramedics. In their report, they noted that the patient had been defibrillated 3 times for ventricular fibrillation, the last of which resulted in a slow, wide-complex rhythm at a rate of about 30 bpm with no discernible pulse. En route to the hospital, chest compressions had been started and he was given epinephrine and atropine, which produced a questionable pulse with the same slow, wide rhythm. He was then given an entire norepinephrine drip bag over a period of about 5 minutes in transport.

On evaluation in the ED, we found the endotracheal tube in good position by direct laryngoscopy, but our colorimetric capnometer did not change color with bag ventilations. His cardiac rhythm on the monitor was slow and wide with a rate less than 30 bpm and no palpable pulse. Chest compressions were again started. My attending suggested a trial of transcutaneous pacing, which produced a questionable pulse at the same slow, wide rhythm. He was then given an entire norepinephrine drip bag over a period of about 5 minutes in transport.

On evaluation in the ED, we found the endotracheal tube in good position by direct laryngoscopy, but our colorimetric capnometer did not change color with bag ventilations. His cardiac rhythm on the monitor was slow and wide with a rate less than 30 bpm and no palpable pulse. Chest compressions were again started. My attending suggested a trial of transcutaneous pacing, which produced good capture at a rate of 80 bpm. Still, there was no pulse. I checked for a pulse with a handheld Doppler and couldn’t find one. I then took the bedside ultrasound transducer and placed it on the patient’s chest and found no pericardial effusion and complete cardiac standstill. I told my attending that given the lack of end-tidal carbon dioxide and the appearance of complete cardiac standstill on ultrasound, we should terminate efforts. She said, “No, look at the monitor. We still have capture. He’s still alive. I think he probably had a myocardial infarction. Call the cardiology team and have him admitted.”

“They’re not going to take this guy,” I protested. “He’s dead. His heart isn’t moving.”

“He’s alive!” she asserted. “There is capture. Call the CCU and get him out of my ER, now!”

Somewhat dejected, I picked up the phone and paged the coronary care unit (CCU) resident. When he called back, I told him that we had a patient that we would like to have admitted.

The CCU resident appeared in the ED almost immediately to evaluate the patient. He surveyed the monitors and briefly examined the patient. He turned around, looked at me and the attending, and proclaimed, “He’s dead. We don’t admit dead people!”

Just as the attending began to argue with him, the transcutaneous pacemaker stopped capturing; its pacer spikes were no longer electrically answered by the man’s fragile, 98-year-old myocardium. The attending finally agreed that the patient was dead. I took the long walk to the family conference room to address the patient’s family.

—Marc E. Levsky, MD
Killeen, TX

Copyright 2005 by Turner White Communications Inc., Wayne, PA. All rights reserved.