Respiratory failure due to respiratory muscle weakness is usually a feature of advanced motor neuron disease (MND), but it is much less common as a presenting feature and may be overlooked if the axial muscles are selectively affected. A high index of suspicion is required to ensure early intervention with potentially life-saving assisted ventilation. This article reports the case of a man with MND whose initial symptoms were of breathlessness. The evaluation of respiratory failure and its presentation in patients with MND is discussed.

CASE PRESENTATION

Initial Presentation and History

A 59-year-old male construction worker presented with a 6-month history of cough, wheezing, and exertional breathlessness. His exercise tolerance was 100 yards while walking on level ground. His symptoms were associated with mild orthopnea but no paroxysmal nocturnal dyspnea or ankle swelling. Cough was productive of mucoid sputum, but the patient had no history of hemoptysis. He reported daytime somnolence and also admitted to recurrent chest infections, particularly during the winter months.

The patient had a history of recent loss of appetite and weight loss (6 kg). His general practitioner diagnosed his chest symptoms to be from a minor exacerbation of chronic obstructive airway disease and prescribed antibiotics and steroids, which provided some symptomatic improvement. Despite treatment, his symptoms prevented him from working for 2 weeks before the current presentation. He was a current smoker, with a total smoking history of 45 pack-years. His only medication was an albuterol inhaler.

The patient had a history of asthma, which had resolved in childhood by the age of 7 years. His other medical history included a cerebral aneurysm clipped in 1972; pneumonia in 2001, for which he was treated at home for 3 weeks; and type 2 diabetes controlled on diet alone.

Physical Examination

On examination, the patient was plethoric, with central cyanosis but no obesity. Pyrexia and tachypnea were both absent, and there was no clubbing or lymphadenopathy. Cardiovascular examination was normal and showed no clinical evidence of heart failure. Respiratory system examination was unremarkable except for widespread wheezes bilaterally. Abdominal examination revealed 1 cm of palpable liver. Neurologic examination was normal.

Diagnostic Evaluations

Electrocardiogram showed sinus rhythm with P pulmonale and deep S-waves in leads V1 through V4. Chest radiograph was normal. Arterial blood gases showed pH of 7.33, bicarbonate level of 29.3 mEq/L with a base excess of 5.9 mEq/L, Pco$_2$ of 72 mm Hg, and Po$_2$ of 46 mm Hg. Hematologic investigations showed polycythemia with a hemoglobin level of 18.8 g/dL and a hematocrit of 54%. Serum creatinine and electrolytes were normal except for an elevated venous bicarbonate level of 43 mEq/L.

At this stage, the provisional diagnosis was type 2 respiratory failure secondary to chronic obstructive pulmonary disease (COPD) with secondary polycythemia. However, pulmonary function tests (Table 1) showed a mild restrictive pattern with normal diffusion and evidence of air trapping. Echocardiogram showed mild left ventricular hypertrophy and right ventricular and right atrial dilatation, with moderate impairment of right ventricular function. The pulmonary arterial pressure was elevated at 37 mm Hg. A ventilation-perfusion scan showed a low probability of pulmonary embolism. A computed tomographic scan of the thorax to investigate the weight loss was normal.

These investigations clearly pointed to an extra-parenchymal restrictive defect, and this conclusion led to a reappraisal of the clinical findings. A more detailed neurologic examination revealed normal cranial nerves except for weakness in the sternocleidomastoids bilaterally. The patient had no tongue fasciculations, and facial

Dr. Mukherjee is a specialist registrar, Respiratory & General Medicine, Queen’s Hospital, Burton-upon-Trent, United Kingdom. Dr. Clague is a consultant physician, Sunderland Royal Hospital, Sunderland, United Kingdom.
power and jaw jerks were normal. Some fasciculations were found in the pectoralis, triceps, latissimus dorsi, and supraspinatus muscles, with relatively preserved muscle bulk. He exhibited wasting in the intercostal muscles, periscapular area, triceps, and first dorsal interosseous with dorsal guttering. Power in the upper limbs was normal. Reflexes generally were reduced. Coordination and sensations were normal. Lower limb examination was normal, with bilateral flexor plantar response. Investigations to exclude other possible causes of neuropathy, including liver function tests, bone profile, creatine kinase, thyroid function, autoantibodies, VDRL test, and immunoelectrophoresis, were normal or negative. Because there was no clinical suspicion, a heavy-metal screening test was not performed. A cervical spine radiograph was normal; magnetic resonance scanning was not performed because of the absence of long-tract signs.

Table 1. Pulmonary Function Test Results in Case Patient

<table>
<thead>
<tr>
<th>Test</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spirometry</td>
<td></td>
</tr>
<tr>
<td>(FEV_1) (L)</td>
<td>2.42 (74%)</td>
</tr>
<tr>
<td>(FVC) (L)</td>
<td>3.34 (81%)</td>
</tr>
<tr>
<td>(FEV_1/FVC)</td>
<td>72.5 (95%)</td>
</tr>
<tr>
<td>Static lung volumes</td>
<td></td>
</tr>
<tr>
<td>(FRC) (L)</td>
<td>4.32 (123%)</td>
</tr>
<tr>
<td>(TLC) (L)</td>
<td>6.07 (89%)</td>
</tr>
<tr>
<td>(RV) (L)</td>
<td>2.69 (115%)</td>
</tr>
<tr>
<td>(RV/TLC)</td>
<td>44.27 (120%)</td>
</tr>
<tr>
<td>Diffusion tests</td>
<td></td>
</tr>
<tr>
<td>(DLCO) (mEq/min/mm Hg)</td>
<td>11.01 (117%)</td>
</tr>
<tr>
<td>(VA) (L)</td>
<td>5.79</td>
</tr>
<tr>
<td>(KCO^*) (mEq/min/mm Hg/L)</td>
<td>1.90 (107%)</td>
</tr>
</tbody>
</table>

NOTE: Figures in parentheses indicate percentages predicted.

\(DLCO \) = lung carbon monoxide diffusing capacity; \(FEV_1 \) = forced expiratory volume in 1 second; \(FRC \) = functional residual capacity; \(FVC \) = forced vital capacity; \(KCO \) = transfer coefficient for carbon monoxide; \(RV \) = residual volume; \(TLC \) = total lung capacity; \(VA \) = alveolar volume.

*Corrected for hemoglobin.

Respiratory Failure in MND

Respiratory failure often develops late in the course of MND, but respiratory muscle weakness often is present at diagnosis\(^1\) and usually is asymptomatic at this stage.\(^2\) Rarely, respiratory muscle weakness can be the presenting feature.\(^3,4\) More often, the course of MND involves insidious development of symptoms, slow deterioration, and eventually respiratory failure.\(^2\)

Specific symptoms depend on the pattern of respiratory muscle involvement. Diaphragmatic weakness usually causes orthopnea, whereas global respiratory muscle weakness usually causes exertional dyspnea.\(^5\) Exertional dyspnea can even be the first manifestation of MND, particularly when other significant cardiopulmonary conditions are present.\(^3\) “Difficulty taking a deep breath” can be a suggestive symptom.\(^5\) Symptom patterns depend on whether the inspiratory or expiratory muscles are predominantly involved (Table 2). (In global weakness of respiratory muscles, there is a combination of symptoms.) Severe dyspnea only when lying flat is a classic sign of bilateral diaphragmatic weakness.\(^6\) Unilateral diaphragmatic paralysis at presentation also has been reported,\(^7\) but these patients do not develop respiratory failure.\(^8\) Some of the symptoms that appear early in the course of MND can be mistakenly attributed to COPD, infection, heart failure, or psychologic causes unless respiratory muscle weakness specifically is sought.

Hypoventilation from intercostal and accessory muscle weakness occurs first during sleep,\(^9\) and, in many patients, sleep-related hypoventilation occurs before dyspnea and causes daytime somnolence if severe enough.\(^7,10\) Upper-airway abnormalities also are an occasional feature of MND and can be associated with muscle weakness. The diagnosis was confirmed by neurophysiologic studies showing a chronic, slightly active, diffuse neurogenic process involving the intercostal muscles and consistent with an indolent form of anterior horn cell disorder. The patient was placed on non-invasive nasal ventilation, which dramatically improved both his clinical condition and blood gas levels.

DISCUSSION

MND is a group of progressive degenerative disorders affecting the lower motor neurons (anterior horn cells of the spinal cord and their brainstem homologs innervating the bulbar muscles) and the upper motor neurons (motor cortex and descending corticospinal and corticobulbar tracts). MND frequently causes death within 5 years of diagnosis. Most deaths are due to pulmonary complications resulting from respiratory muscle weakness and bulbar involvement.
obstructive events causing sleep disruption. The diagnosis of chronic ventilatory failure usually is suggested by fatigue, lethargy, daytime somnolence, morning headaches, and difficulty concentrating. Other modes of presentation include acute respiratory failure or respiratory arrest or ventilator dependency, and these groups of patients usually have a bilaterally weakened diaphragm or bulbar muscle involvement with secondary pulmonary complications of aspiration and pneumonia.

In this case, the case patient had chronic respiratory failure with symptoms that suggested global weakness of the respiratory muscles, confirmed by respiratory muscle function tests. The absence of upper motor neuron signs pointed toward spinal muscular atrophy rather than amyotrophic lateral sclerosis. He had both inspiratory and expiratory muscle weakness, as shown by reductions in both maximum inspiratory pressure and maximum expiratory pressure, and more than a 30% decrease in the supine vital capacity, suggesting diaphragmatic paralysis. Residual volume was raised, probably because of expiratory muscle weakness. Because he was unable to take adequate breaths, the alveoli were insufficiently ventilated and carbon monoxide diffusing capacity of the lung (DLCO) was reduced. However, when DLCO was corrected for lung volume and transfer coefficient for carbon monoxide was calculated, this was increased. Arterial blood gases also demonstrated florid type 2 respiratory failure. In fact, the patient also had right ventricular dysfunction secondary to chronic hypoxemia and polycythemia. It was considered, although not confirmed, that his daytime somnolence was due to nocturnal hypoventilation secondary to the muscle weakness, but because he already had significant daytime hypoxemia, no formal sleep studies or overnight oximetry tests were performed.

Of particular interest in this case were the indolent nature with which MND developed and the pattern of disease, which affected predominantly the intercostal muscles and diaphragm with relative sparing of the limb muscles. As a result, the neurologic signs were subtle and easily overlooked. In addition, paradoxical abdominal movement was absent because the forced vital capacity was not reduced significantly. It has been shown that forced vital capacity correlates poorly with respiratory symptoms; maximum inspiratory pressure and nocturnal oximetry may be more sensitive measures of early respiratory insufficiency.

CONCLUSION

Selective axial and respiratory muscle weakness due to MND should be considered in the differential diagnosis of patients presenting with unexplained respiratory failure. It is important to diagnose respiratory muscle weakness early in patients with MND. Respiratory muscle weakness diminishes quality of life; moreover, the rate of decline in respiratory function may predict survival. Increasing evidence shows that noninvasive ventilation extends life and improves quality of life in patients with MND. Noninvasive nasal ventilation dramatically improved the case patient’s clinical condition and blood gas levels.

REFERENCES

